• Matter and Radiation at Extremes
  • Vol. 3, Issue 6, 312 (2018)
1、2、*, 1, 3, 3, 3, 4, 5, and 6
Author Affiliations
  • 1Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, NY 14623-1299, USA
  • 2Department of Chemical Engineering, University of Rochester, Rochester, NY 14623-1299, USA
  • 3General Atomics, 3550 General Atomics Court, San Diego, CA 92121-1122, USA
  • 4Industrial Development Center, Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu City, Shizuoka Pref., 431-1202, Japan
  • 5Institute of Laser Engineering, Osaka University, 2e6 Yamadaoka, Suita, Osaka 565-0871, Japan
  • 6Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA, 94550, USA
  • show less
    DOI: Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Properties of vapor-deposited and solution-processed targets for laser-driven inertial confinement fusion experiments[J]. Matter and Radiation at Extremes, 2018, 3(6): 312 Copy Citation Text show less
    References

    [1] S.P. Regan, V.N. Goncharov, I.V. Igumenshchev, T.C. Sangster, R. Betti, et al., Demonstration of fuel hot-spot pressure in excess of 50 Gbar for direct-drive, layered deuterium-tritium implosions on OMEGA, Phys. Rev. Lett. 117 (2016), https://doi.org/10.1103/PhysRevLett.117.025001,025001; 117 (2016) 059903(E), https://doi.org/10.1103/PhysRevLett.117.059903.

    [2] V.N. Goncharov, S.P. Regan, T.C. Sangster, R. Betti, T.R. Boehly, et al., Demonstrating ignition hydrodynamic equivalence in direct-drive cryogenic implosions on OMEGA, J. Phys. Conf. Ser. 717 (2016), https://doi.org/10.1088/1742-6596/717/1/012008, 012008.

    [3] S.P. Regan, V.N. Goncharov, T.C. Sangster, E.M. Campbell, R. Betti, et al., The national direct-drive program: OMEGA to the national ignition facility, Fusion Sci. Technol. 73 (2018) 89, https://doi.org/10.1080/15361055.2017.1397487.

    [4] B.W. McQuillan, A. Nikroo, D.A. Steinman, F.H. Elsner, D.G. Czechowicz, et al., The PAMS/GDP process for production of ICF target mandrels, Fusion Technol. 31 (1997) 381, https://doi.org/10.13182/FST31-381.

    [5] M. Takagi, T. Norimatsu, T. Yamanaka, S. Nakai, Development of deuterated polystyrene shells for laser fusion by means of a densitymatched emulsion method, J. Vac. Sci. Technol. A 9 (1991) 2145, https://doi.org/10.1116/1.577241.

    [6] T. Bernat, C. Castro, A. Pasternak, J. Sin, O. Stein, et al., Quantitative submicron particulate characterization by dark-field microscopy, Fusion Sci. Technol. 73 (2017) 119, https://doi.org/10.1080/15361055.2017.1406236.

    [7] Mountains 7 Software, Digital Surf, 25000 Besancon France.

    [8] ImageJ, http://rsbweb.nih.gov/ij/(27 January 2014).

    [9] R.C. Cook, B.J. Kozioziemski, A. Nikroo, H.L. Wilkens, S. Bhandarkar, et al., National ignition facility target design and fabrication, laser part, Beams 26 (2008) 479, https://doi.org/10.1017/S0263034608000499.

    [10] A. Nikroo, D. Woodhouse, Bounce coating induced domes on glow discharge polymer coated shells, Fusion Technol. 35 (1999) 202, https://doi.org/10.13182/FST99-A11963923.

    [11] G. Wilemski, T. Boone, L. Cheung, D. Nelson, R. Cook, Prediction of phase separation during the drying of polymer shells, Fusion Technol. 28(1995) 1773, https://doi.org/10.13182/FST95-A30411.

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Properties of vapor-deposited and solution-processed targets for laser-driven inertial confinement fusion experiments[J]. Matter and Radiation at Extremes, 2018, 3(6): 312
    Download Citation