• Acta Photonica Sinica
  • Vol. 47, Issue 11, 1123003 (2018)
HE Bing-qian1、*, LI Yong-hong1, CAO Ya-nan2, and YUE Feng-ying3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/gzxb20184711.1123003 Cite this Article
    HE Bing-qian, LI Yong-hong, CAO Ya-nan, YUE Feng-ying. Tunable Fano Resonance Based on Metal Square Core Structure Embedded in MIM Resonator[J]. Acta Photonica Sinica, 2018, 47(11): 1123003 Copy Citation Text show less
    References

    [1] BAMES W L, DEREUX A, EBBESEN T W . Surface plasmom subwavelength optics[J]. Nature, 2003, 424: 824-830.

    [2] ZAYATS A V, SMOLYANINOV I I, MARADUDIN A A. Nano-optics of surface plasmon polaritons[J]. Physics Reports, 2005, 408: 131-314.

    [3] GRAMOTNEV D K, BOZHEVOLNYI S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 2010, 4(2): 83-91.

    [4] ZAFAR R, SALIM M. Achievement of large normalized delay bandwidth product by exciting electromagnetic-induced transparency in plasmonic waveguide[J]. IEEE Journal Quantum Electron, 2015, 51: 7200306.

    [5] SINGH L, SHAMA T, KUMAR M.Controlled hybridization of plasmonic and optical modes for low-loss nano-scale optical confinement with ultralow dispersion[J]. IEEE Journal of Quantum Electronics, 2018, 54(2): 7200105.

    [6] ZHANG Z D, WANG H Y, ZHANG Z Y. Fano resonance in a gear-shaped nanocavity of the metal-insulator-metal waveguide[J]. Plasmonics, 2012, 8: 797-801.

    [7] JIANG Ya-lan, WANG Ji-cheng, WANG Yue-ke, et al. A MIM surface plamsom T-splitter based on a stub structure[J]. Acta Photonica Sinica, 2014, 43(9): 0923002.

    [8] YANG Song-lin, YU Da-ming, LIU Gui-dong, et al. Perfect plasmon-induced absorption and its application for multi-switching in simple plasmonic system[J]. Plasmonics, 2017, 5758: 1015-1020.

    [9] DONG Li-rong, XU Xue-mei, LI Chen-jing, et al. Plasmon-induced transparency in sensing application with semicircle cavity waveguide[J]. Optics Communications, 2018, 410: 751-755.

    [10] ZHAO Shu-ming, ZHANG Hao-chi, ZHAO Jia-hao, et al. An ultra-compact rejection filter based on spoof surface plasmon polaritons[J]. Scientific Reports, 2017, 7(1): 10576.

    [11] WU De-chang, YANG Shu. Double-sided T-shaped-disk waveguide filters based on plasmon-induced transparency[J].Chinese Journal of Luminescence,2016, 37(10): 1287-1291.

    [12] DAGHESTANI H N, DAY B W. Theory and applications of surface plasmon resonance resonant mirror resonant waveguide grating and dual polarization interferometry biosensors[J]. Sensors, 2010, 10: 9630-9646.

    [13] BELUSHKIN A, YESILKOY F, ALTUG H. Nanoparticle enhanced plasmonic biosensor for digital biomarker detection in a microarray[J]. Acs Nano, 2018, 12(5): 4453-4461.

    [14] NEIRA A D, WURTZ G A, ZAYATS A V. All-optical switching in silicon photonic waveguides with an epsilon-near-zero resonant cavity[J]. Photonics Research, 2018, 6(5): B1.

    [15] RANA G, DESHMUKH P, PALKHIVALA S, et al. Quadrupole-quadrupole interactions to control plasmon-induced transparency[J]. Physical Review Applied, 2018, 9(6): 064015.

    [16] CIRELLI C, MARANTE C, HEUSER S, et al. Anisotropic photoemission time delays close to a Fano resonance[J]. Nature Communications, 2018, 9(1): 29511164.

    [17] YU S, PIAO X, HONG J, et al. Progress toward high-Q perfect absorption: a Fano antilaser[J]. Physical Review A, 2015, 92(1): 011802.

    [18] LOU Xiao-wei, CUI Jin-jiang, DONG Ning-ning, et al. Analysis of sharpness Fano resonance line based on eye-like resonator[J]. Acta Photonica Sinica, 2015, 44(1): 0113002.

    [19] CHEN Hui-bin, ZHANG Zhi-dong, YAN Shu-bin, et al. Fano resonance based on a rectangular cavity coupled with a semi-circular cavity[J]. Acta Photonica Sinica, 2016, 45(8): 0823002.

    [20] ZHANG Zhi-dong, LUO Liang, XUE Chen-yang, et al. Fano resonance based on metal-insulator-metal waveguide-coupled double rectangular cavities for plasmonic nanosensors[J]. Sensors, 2016, 16(5): 642-651.

    [21] ZHAO X, ZHANG Z, YAN S. Tunable Fano resonance in asymmetric MIM waveguide structure[J]. Sensors, 2017, 17(7): 1494-1501.

    [22] LIU Qiang, BIBBO L, ALBIN S, et al. Plasmonic waveguide design for the enhanced forward stimulated Brillouin scattering in diamond[J]. Scientific Report, 2018, 8(1): 88-97.

    [23] KEKATPURE R D, HRYCIW A C, BARNRD E S, et al. Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator[J]. Optics Express, 2009, 17: 4112-24129.

    [24] GAI Hong-fei, WANG Jia, TIAN Qian. Modified Debye model parameters of metals applicable for broadband calculations[J]. Applied Optics, 2007, 46: 2229-2233.

    [25] CHEN Jian-jun, LI Zhi, LEI Ming, et al. Plasmonic Y-splitters of high wavelength resolution based on strongly coupled-resonator effects[J]. Plasmonics, 2012, 7: 441-445.

    [26] CHEN J, LI Z, ZOU Y, et al. Coupled-resonator-induced Fano resonances for plasmonic sensing with ultra-high figure of merits[J]. Plasmonics, 2013, 8: 1627-1631.

    HE Bing-qian, LI Yong-hong, CAO Ya-nan, YUE Feng-ying. Tunable Fano Resonance Based on Metal Square Core Structure Embedded in MIM Resonator[J]. Acta Photonica Sinica, 2018, 47(11): 1123003
    Download Citation