• Advanced Photonics
  • Vol. 3, Issue 4, 045001 (2021)
Pengpeng Ding1、†, Yunhua Yao1, Dalong Qi1、*, Chengshuai Yang1, Fengyan Cao1, Yilin He1, Jiali Yao1, Chengzhi Jin1, Zhengqi Huang1, Li Deng1, Lianzhong Deng1, Tianqing Jia1, Jinyang Liang2, Zhenrong Sun1, and Shian Zhang1、3、*
Author Affiliations
  • 1East China Normal University, School of Physics and Electronic Science, State Key Laboratory of Precision Spectroscopy, Shanghai, China
  • 2Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, Laboratory of Applied Computational Imaging, Varennes, Québec, Canada
  • 3Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, China
  • show less
    DOI: 10.1117/1.AP.3.4.045001 Cite this Article Set citation alerts
    Pengpeng Ding, Yunhua Yao, Dalong Qi, Chengshuai Yang, Fengyan Cao, Yilin He, Jiali Yao, Chengzhi Jin, Zhengqi Huang, Li Deng, Lianzhong Deng, Tianqing Jia, Jinyang Liang, Zhenrong Sun, Shian Zhang. Single-shot spectral-volumetric compressed ultrafast photography[J]. Advanced Photonics, 2021, 3(4): 045001 Copy Citation Text show less
    SV-CUP’s configuration and principle. (a) System configuration of SV-CUP: M1 and M2, mirrors; ED, engineered diffuser; DS, dynamic scene; CL, camera lens; BS1 and BS2, beam splitters (reflection/transmission: 50/50); F1 and F2, filters; G, diffraction grating; L1 and L2, lenses; DMD, digital micromirror device; CMOS, complementary metal-oxide semiconductor camera; and SC1 and SC2, streak cameras. (b) Working principle of SV-CUP: C, spatial encoding operator; T, temporal shearing operator; K, spatial-temporal integration operator; S, spectral shearing operator; and M, spatial–temporal–spectral integration operator.
    Fig. 1. SV-CUP’s configuration and principle. (a) System configuration of SV-CUP: M1 and M2, mirrors; ED, engineered diffuser; DS, dynamic scene; CL, camera lens; BS1 and BS2, beam splitters (reflection/transmission: 50/50); F1 and F2, filters; G, diffraction grating; L1 and L2, lenses; DMD, digital micromirror device; CMOS, complementary metal-oxide semiconductor camera; and SC1 and SC2, streak cameras. (b) Working principle of SV-CUP: C, spatial encoding operator; T, temporal shearing operator; K, spatial-temporal integration operator; S, spectral shearing operator; and M, spatial–temporal–spectral integration operator.
    SV-CUP’s depth resolution characterization: (a) schematic diagram of the experimental setup; (b) the actual size of the ladder-structured model along the x and z axes, 25 mm along the y axis; (c) the selected reconstructed images at the times of 8, 32, and 104 ps; and (d) the retrieved 3D (x,y,z) data cube from Fig. 2(c).
    Fig. 2. SV-CUP’s depth resolution characterization: (a) schematic diagram of the experimental setup; (b) the actual size of the ladder-structured model along the x and z axes, 25 mm along the y axis; (c) the selected reconstructed images at the times of 8, 32, and 104 ps; and (d) the retrieved 3D (x,y,z) data cube from Fig. 2(c).
    SV-CUP’s 5D imaging: (a) experimental arrangement for imaging the photoluminescent dynamics of a 3D mannequin coated with CdSe quantum dots; (b) reconstructed data cube of the 3D mannequin; (c) selected reconstructed images of the 3D mannequin at some representative times and wavelengths; (d) photoluminescent dynamics calculated from (c) (blue line) and measured by a streak camera (red line); (e) fluorescence spectrum calculated from (c) (blue line) and measured by a spectrometer (red line); (f) time-resolved spectroscopy extracted from (c); and (g) calculated fluorescence lifetimes at some selected spectral components (Video 1, MP4, 1.3 MB [URL: https://doi.org/10.1117/1.AP.3.4.045001.1).
    Fig. 3. SV-CUP’s 5D imaging: (a) experimental arrangement for imaging the photoluminescent dynamics of a 3D mannequin coated with CdSe quantum dots; (b) reconstructed data cube of the 3D mannequin; (c) selected reconstructed images of the 3D mannequin at some representative times and wavelengths; (d) photoluminescent dynamics calculated from (c) (blue line) and measured by a streak camera (red line); (e) fluorescence spectrum calculated from (c) (blue line) and measured by a spectrometer (red line); (f) time-resolved spectroscopy extracted from (c); and (g) calculated fluorescence lifetimes at some selected spectral components (Video 1, MP4, 1.3 MB [URL: https://doi.org/10.1117/1.AP.3.4.045001.1).
    Pengpeng Ding, Yunhua Yao, Dalong Qi, Chengshuai Yang, Fengyan Cao, Yilin He, Jiali Yao, Chengzhi Jin, Zhengqi Huang, Li Deng, Lianzhong Deng, Tianqing Jia, Jinyang Liang, Zhenrong Sun, Shian Zhang. Single-shot spectral-volumetric compressed ultrafast photography[J]. Advanced Photonics, 2021, 3(4): 045001
    Download Citation