[1] ZHANG S, WANG T, DONG J, et al. Underwater im- age enhancement via extended multi-scale retinex[J]. Neuro computing, 2017, 245: 1-9.
[2] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[3] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YO- LOv4: optimal speed and accuracy of object detec- tion[EB/OL]. (2020-04-23) [2022-10-17]. https://arxiv. org /abs/ 2004.10934.
[4] ANCUTI C O, ANCUTI C, VLEESCHOUWER C D, et al. Color balance and fusion for underwater image en- hancement[J]. IEEE transactions on image processing, 2018, 27(1): 379-393.
[5] LIN W H, ZHONG J X, LIU S, et al. RoIMix: pro- posal-fusion among multiple images for underwater ob- ject detection[C]//IEEE International Conference on Acoustics, Speech and Signal Processing, May 4-8, 2020, Barcelona, Spain. New York: IEEE, 2020: 2588-2592.
[6] JIAN M, LIU X, LUO H, et al. Underwater image proc- essing and analysis: a review[J]. Signal processing: im- age communication, 2021, 91: 116088.
[7] CAI X, JIANG N, CHEN W, et al. CURE-Net: a cas- caded deep network for underwater image enhance- ment[J]. IEEE journal of oceanic engineering, 2023.
[8] LI Y, RUAN R, MI Z, et al. An underwater image res- toration based on global polarization effects of under- water scene[J]. Optics and lasers in engineering, 2023, 165: 107550.
[9] FAN B, CHEN W, CONG Y, et al. Dual refinement underwater object detection network[C]//European Conference on Computer Vision, August 23-28, 2020, Glasgow, UK. Cham: Springer, 2020: 275-291.
[10] LIU H, SONG P, DING R. WQT and DG-YOLO: to- wards domain generalization in underwater object de- tection[EB/OL]. (2020-04-14) [2022-10-17]. http://arxiv.org/ abs/2004.06333.
[11] WANG Z, LIU C, WANG S, et al. UDD: an underwateropen-sea farm object detection dataset for underwater robot picking[EB/OL]. (2021-07-28) [2022-10-17]. https: //arxiv.org/abs/2003.01446v1.
[12] LI Y, RUAN R, MI Z, et al. An underwater image res- toration based on global polarization effects of under- water scene[J]. Optics and lasers in engineering, 2023, 165: 107550.
[13] ZHANG Y, LI X S, SUN Y M, et al. Underwater object detection algorithm based on channel attention and fea- ture fusion[J]. Journal of Northwestern Polytechnical University, 2022, 40(2): 433-441.
[14] YANG Y, YU H P, ZHAO G L. A fast algorithm for YCbCr to RGB conversion[J]. IEEE transactions on consumer electronics, 2007, 53(4): 1490-1493.
[15] PREMAL C E, VINSLEY S S. Image processing based forest fire detection using YCbCr colour mod- el[C]//2014 International Conference on Circuits, Power and Computing Technologies (ICCPCT-2014), March 20-21, 2014, Nagercoil, India. New York: IEEE, 2014: 1229-1237.
[16] CHEN Y, FAN H, XU B, et al. Drop an octave: reduc- ing spatial redundancy in convolutional neural networks with octave convolution[C]//Proceedings of the IEEE/CVF International Conference on Computer Vi- sion, October 27-November 2, 2019, Seoul, Korea (South). New York: IEEE, 2019: 3435-3444.
[17] PENG L, ZHU C, BIAN L. U-shape transformer for underwater image enhancement[EB/OL]. (2021-11-23) [2022-10-17]. http://arxiv.org/abs/2111.11843.
[18] MAHASIN M, DEWI I A. Comparison of CSPDark- Net53, CSPResNeXt-50, and EfficientNet-B0 back- bones on YOLOv4 as object detector[J]. International journal of engineering, science and information tech- nology, 2022, 2(3): 64-72.
[19] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni- tion, June 27-30, 2016, Las Vegas, USA. New York: IEEE, 2016: 770-778.
[20] SETHI R, INDU S. Fusion of underwater image en- hancement and restoration[J]. International journal of pattern recognition and artificial intelligence, 2020, 34(03): 2054007.
[21] ZHANG Q, DA L, ZHANG Y, et al. Integrated neural networks based on feature fusion for underwater target recognition[J]. Applied acoustics, 2021, 182: 108261.
[22] YANG H H, HUANG K C, CHEN W T. Laffnet: a lightweight adaptive feature fusion network for under- water image enhancement[C]//2021 IEEE International Conference on Robotics and Automation (ICRA), May 30-June 6, 2021, Xi’an, China. New York: IEEE, 2021: 685-692.