• Acta Photonica Sinica
  • Vol. 45, Issue 9, 927002 (2016)
CHEN Xing1、*, QIN Li-guo1, and WANG Qin1、2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/gzxb20164509.0927002 Cite this Article
    CHEN Xing, QIN Li-guo, WANG Qin. Research on the Lasing Performance of a Quantum Dot-Microcavity System with Pure Dephasing[J]. Acta Photonica Sinica, 2016, 45(9): 927002 Copy Citation Text show less
    References

    [1] LEDENTSOV N N, SHCHUKIN V A, et al. Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth[J]. Physical Review B, 1996, 54(12): 8743-8750.

    [2] NOMURA M, IWAMOTO S, WATANABE K, et al. Room temperature continuous-wave lasing in photonic crystal nanocavity[J]. Optics Express, 2002, 14(13): 6308-6315.

    [3] MABUCHI H, DOHERTY A C. Cavity quantum electrodynamics: coherence in context[J]. Science, 2002, 298(5597): 1372-1377.

    [4] SUFFCZYNSKI J, DOUSSE A, GAUTHRON K, et al. Origin of the optical emission within the cavity mode of coupled quantum dot-cavity systems[J]. Physical Review Letters, 2009, 103(2): 027401.

    [5] WINGER M, VOLZ T, TAREL G, et al. Explanation of photo correlations in the far-off-resonance optical emission from a quantum dot-cavity system[J]. Physical Review Letters, 2009, 103(20): 207403.

    [6] NOMURA M, KUMAGAI N, IWAMOTO S, et al. Laser oscillation in a strongly coupled single quantum dot-nanocavity system[J]. Nature Physics, 2010, 6(4): 279-283.

    [7] PELTON M, YAMAMOTO Y. Ultralow threshold laser using a single quantum dot and a microsphere cavity[J]. Physical Review A, 1999, 59(3):2418-2421.

    [8] STRAUF S, HENNESSY K, RAKHER M T, et al. Self-tuned quantum dot gain in photonic crystal lasers[J]. Physical Review Letters, 2006, 96(12): 127404.

    [9] VALLE E, LAUSSY F P, TEJEDOR C. Luminescence spectra of quantum dots in microcavities. II. Fermions[J]. Physical Rewiew B. 2009, 79(23): 235326.

    [10] KHITROVA G, GIBBS H M, KIRA M, et al. Vacuum Rabi splitting in semiconductors[J]. Nature. Physics, 2006, 2(2): 81-90.

    [11] XIAO Y F , LIU Y C , LI B B, et al. Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator[J]. Physical Review A, 2012, 85(3): 031805.

    [12] MAJUMDAR A, RUNDQUIST A, BAJCSY M, et al. Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule[J]. Physical Review B, 2012, 86(4): 045315.

    [13] MULLER K, FISCHER K A, RUNDQUIST A, et al. Ultrafast polariton-phonon dynamics of strongly coupled quantum dot-nanocavity systems[J]. Physical Review X, 2015, 5(3): 03106.

    [14] VEENA H I, REKHA M, ANSHU P. Low threshold quantum dot lasers[J]. The Journal of Physical Chemistry Letters, 2016, 7(7): 1244-1248.

    [15] CHEN Xing, MI Xian-wu. Characteristics of pure dephasing on non-resonant quantum dot-cavity coupling system and its application prospect[J]. Acta Photonica Sinica, 2011, 40(5): 746-752.

    [16] AUFFEVES A, GERACE D, GERARD J M, et al, Controlling the dynamics of a coupled atom-cavity system by pure dephasing[J]. Physical Review B, 2010, 81(24): 245419.

    [17] UNSLEBER S, MCCUTCHEON D P S, DAMBACH M, et al. Two-photon interference from a quantum dot microcavity: Persistent pure dephasing and suppression of time jitter[J]. Physical Review B, 2015, 91(7): 075413.

    [18] LIU Yong-Chun, LUAN Xing-Sheng, LI Hao-Kun, et al. Coherent polariton dynamics in coupled highly-dissipative cavity quantum electrodynamics[J]. Physical Review Letters, 2014, 112(21): 213602.

    [19] CAO Shuo, XU Xiu-lai. Microcavity enhanced single-photon emission from single semiconductor quantum dots[J]. Physics, 2014, 43(11): 740-748.

    [20] LIAO Qing-hong, LIU Zheng-dong, YOU Su-ping, et al. Stimulated emission behavior of single quantum dot in microcavity[J]. Acta Photonica Sinica, 2008, 37(5): 883-886.

    [21] SUKUMAR C V, BUCK B. Multi-Phonon generalization of the Jaynes-Cummings model[J]. Physics Letters A, 1981, 83(5): 211-233.

    [22] CHUMAKOV S M, KOZIEROWSKI M, SANCHEZMONDRAGON J J. Analytical approach to the photon statistics in the thermal Jaynes-Cummings model with an initially unexcited atom[J]. Physical Review A, 1993, 48(6): 4594-4597.

    [23] XU Hai-xin, WANG Hai-long, YAN Jin-yi, et al. Gain and linenidth enhancement factor of InAs/GaAs quantum-dot laser diodes[J]. Chinese Journal of Luminescence, 2015, 36(5): 567-571.

    [24] KARLOVICH T B, KILIN S Y. Auto-and cross-correlation functions of a one-atom laser in a regime of strong coupling[J]. Optics and Spectroscopy, 2007, 103(2): 280-290.

    [25] KARLOVICH T B, KILIN S Y. Fluorescence spectrum of a one-atom laser in the strong-coupling regime[J]. Laser Physics, 2008, 18(6): 783-789.

    [26] NAESBY A, SUHR T, KRISTENSEN P T, et al. Influence of pure dephasing on emission spectra from single photon sources[J]. Physical Review A, 2008, 78(4): 045802.

    [27] AUFFEVES A, GERARD J M, POIZAT J P. Pure emitter dephasing: A resource for advanced solid-state single-photon sources[J]. Physical Review A, 2009, 79(5): 053838.

    [28] KAER P, GREGERSEN N, MORK J. The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity QED systems[J]. New Journal of physics, 2013, 15: 035027.

    [29] KAER P, LODAHL P, JAUHO A P, et al. Microscopic theory of indistinguishable single-photon emission from a quantum dot coupled to a cavity: The role of non-Markovian phonon-induced decoherence[J]. Physical Review B, 2013, 87(8): 081308.

    [30] KAER P, MORK J. Decoherence in semiconductor cavity QED systems due to phonon couplings[J]. Physical Review B, 2014, 90(3): 035312.

    CHEN Xing, QIN Li-guo, WANG Qin. Research on the Lasing Performance of a Quantum Dot-Microcavity System with Pure Dephasing[J]. Acta Photonica Sinica, 2016, 45(9): 927002
    Download Citation