• Chinese Journal of Lasers
  • Vol. 48, Issue 12, 1212003 (2021)
Feng Ding, Yuqiang Ding, Sen Han, and Xueyuan Hu*
Author Affiliations
  • School of Information Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
  • show less
    DOI: 10.3788/CJL202148.1212003 Cite this Article Set citation alerts
    Feng Ding, Yuqiang Ding, Sen Han, Xueyuan Hu. Coherence Evolution in Quantum Thermodynamics[J]. Chinese Journal of Lasers, 2021, 48(12): 1212003 Copy Citation Text show less
    References

    [1] Brandão F G, Horodecki M, Oppenheim J et al. Resource theory of quantum states out of thermal equilibrium[J]. Physical Review Letters, 111, 250404(2013). http://europepmc.org/abstract/med/24483734

    [2] Brandão F, Horodecki M, Ng N et al. The second laws of quantum thermodynamics[J]. PNAS, 112, 3275-3279(2015).

    [3] Ćwikliński P, Studziński M, Horodecki M et al. Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics[J]. Physical Review Letters, 115, 210403(2015). http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.210403

    [4] Horodecki M, Oppenheim J. Fundamental limitations for quantum and nanoscale thermodynamics[J]. Nature Communications, 4, 2059(2013). http://europepmc.org/abstract/med/23800725

    [5] Hu X Y, Ding F. Thermal operations involving a single-mode bosonic bath[J]. Physical Review A, 99, 012104(2019). http://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.012104

    [6] Ding F, Hu X Y, Fan H. Amplifying asymmetry with correlating catalysts[J]. Physical Review A, 103, 022403(2021). http://arxiv.org/abs/2007.06247

    [7] Müller M P. Correlating thermal machines and the second law at the nanoscale[J]. Physical Review X, 8, 041051(2018). http://arxiv.org/abs/1707.03451

    [8] Jonathan D, Plenio M B. Entanglement-assisted local manipulation of pure quantum states[J]. Physical Review Letters, 83, 3566-3569(1999).

    [9] Turgut S. Catalytic transformations for bipartite pure states[J]. Journal of Physics A Mathematical and Theoretical, 40, 12185-12212(2007).

    [10] Åberg J. Catalytic coherence[J]. Physical Review Letters, 113, 150402(2014).

    [11] Bu K F, Singh U, Wu J D. Catalytic coherence transformations[J]. Physical Review A, 93, 042326(2016).

    [12] Anshu A, Hsieh M H, Jain R. Quantifying resources in general resource theory with catalysts[J]. Physical Review Letters, 121, 190504(2018).

    [13] Chen S R, Zhang X J, Zhou Y et al. One-shot coherence distillation with catalysts[J]. Physical Review A, 100, 042323(2019). http://arxiv.org/abs/1906.09067

    [14] Boes P, Eisert J, Gallego R et al. Von Neumann entropy from unitarity[J]. Physical Review Letters, 122, 210402(2019). http://www.ncbi.nlm.nih.gov/pubmed/31283324

    [15] Lostaglio M, Müller M P. Coherence and asymmetry cannot be broadcast[J]. Physical Review Letters, 123, 020403(2019). http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.020403

    [16] Marvian I, Spekkens R W. No-broadcasting theorem for quantum asymmetry and coherence and a trade-off relation for approximate broadcasting[J]. Physical Review Letters, 123, 020404(2019). http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.020404

    [17] Lostaglio M. An introductory review of the resource theory approach to thermodynamics[J]. Reports on Progress in Physics. Physical Society, 82, 114001(2019). http://www.ncbi.nlm.nih.gov/pubmed/31546240

    [18] Lostaglio M, Jennings D, Rudolph T. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy[J]. Nature Communications, 6, 6383(2015).

    [19] Lostaglio M, Alhambra Á M, Perry C. Elementary thermal operations[J]. Quantum, 2, 52(2018).

    [20] Bartlett S D, Rudolph T, Spekkens R W. Reference frames, superselection rules, and quantum information[J]. Reviews of Modern Physics, 79, 555-609(2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT04000007000004000001000001&idtype=cvips&gifs=Yes

    [21] Piani M, Cianciaruso M, Bromley T R et al. Robustness of asymmetry and coherence of quantum states[J]. Physical Review A, 93, 042107(2016). http://arxiv.org/abs/1601.03782

    [22] Bužek V, Derka R, Massar S. Optimal quantum clocks[J]. Physical Review Letters, 82, 2207-2210(1999).

    [23] Marvian I, Spekkens R W. The theory of manipulations of pure state asymmetry: I. basic tools, equivalence classes and single copy transformations[J]. New Journal of Physics, 15, 033001(2013). http://arxiv.org/abs/1104.0018v1

    [24] Marvian I, Spekkens R W. Extending Noether’s theorem by quantifying the asymmetry of quantum states[J]. Nature Communications, 5, 3821(2014). http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2014NatCo...5E3821M

    [25] Marvian I, Spekkens R W. Modes of asymmetry: the application of harmonic analysis to symmetric quantum dynamics and quantum reference frames[J]. Physical Review A, 90, 062110(2014). http://arxiv.org/abs/1312.0680

    [26] Marvian I, Spekkens R W. How to quantify coherence: distinguishing speakable and unspeakable notions[J]. Physical Review A, 94, 052324(2016). http://arxiv.org/abs/1602.08049

    [27] Streltsov A, Adesso G, Plenio M B. Colloquium: quantum coherence as a resource[J]. Reviews of Modern Physics, 89, 041003(2017). http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.89.041003

    [28] Hu X Y, Fan H, Zhou D L et al. Necessary and sufficient conditions for local creation of quantum correlation[J]. Physical Review A, 85, 032102(2012). http://arxiv.org/abs/1112.3141

    [29] Gell-Mann M. Symmetries of baryons and mesons[J]. Physical Review, 125, 1067-1084(1962). http://www.worldscientific.com/doi/abs/10.1142/9789812836854_0007

    Feng Ding, Yuqiang Ding, Sen Han, Xueyuan Hu. Coherence Evolution in Quantum Thermodynamics[J]. Chinese Journal of Lasers, 2021, 48(12): 1212003
    Download Citation