• Journal of Applied Optics
  • Vol. 45, Issue 4, 732 (2024)
Kai WANG, Shuli LOU*, and Yan WANG
Author Affiliations
  • School of Physics and Electronic Information, Yantai University, Yantai 264005, China
  • show less
    DOI: 10.5768/JAO202445.0402002 Cite this Article
    Kai WANG, Shuli LOU, Yan WANG. Small object detection algorithm based on improved YOLOv3[J]. Journal of Applied Optics, 2024, 45(4): 732 Copy Citation Text show less
    References

    [1] Chuang GENG, Pinde SONG, Lijia CAO. Research progress of YOLO algorithm in object detection. Journal of Ordnance Equipment Engineering, 43, 162-173(2022).

    [2] Yanhua SHAO, Duo ZHANG, Hongyu CHU et al. A review of YOLO object detection based on deep learning. Journal of Electronics & Information Technology, 44, 3697-3708(2022).

    [3] Ziwei DU, Heng ZHOU, Chengyang LI et al. A review of small object detection algorithms for deep convolutional neural networks. Computer Science, 49, 205-218(2022).

    [4] Rujin YANG, Xinna SHANG, Wenfa LI. A review of small object detection methods based on deep learning, 5(2022).

    [5] R GIRSHICK, J DONAHUE, T DARRELL et al. Rich feature hierarchies for accurate object detection and semantic segmentation, 580-587(2014).

    [6] R GIRSHICK. Fast R-CNN, 1440-1448(2015).

    [7] S REN, K HE, R GIRSHICK et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2016).

    [8] W LIU, D ANGUELOV, D ERHAN et al. SSD: Single Shot Multibox Detector, 21-37(2016).

    [9] J REDMON, S DIVVALA, R GIRSHICK et al. You only look once: Unified, real-time object detection, 779-788(2016).

    [10] J REDMON, A FARHADI. YOLO9000: better, faster, stronger, 7263-7271(2017).

    [11] Gang DONG, Weicheng XIE, Xiaolong HUANG et al. A review of small object detection algorithms in deep learning. Computer Engineering and Applications, 59, 16-27(2023).

    [12] T Y LIN, P DOLLÁR, R GIRSHICK et al. Feature pyramid networks for object detection, 2117-2125(2017).

    [13] J REDMON, A FARHADI. YOLOV3: an incremental improvement. https://pjreddie.com/media/files/papers/YOLOv3.pdf

    [14] Liying ZHANG, Chunjiang PANG, Xinying WANG et al. Multi-scale object detection algorithm based on improved YOLOv3. Journal of Computer Applications, 42, 2423-2431(2022).

    [15] Lulu GE, Houru CHEN, Zheming YANG et al. An improved YOLOv3 object detection algorithm based on feature enhancement, 8(2022).

    [16] Dehai CHEN, Shiru SUN, Yuchao WANG et al. Research on small object detection based on improved SSD algorithm. Transducer and Microsystem Technologies, 42, 65-68(2023).

    [17] Shan WU, Feng ZHOU. Small object detection based on improved SSD algorithm. Computer Engineering, 49, 179-188(2023).

    [18] A BOCHKOVSKIY, C Y WANG, H Y LIAO. Yolov4: optimal speed and accuracy of object detection. https://www.cnblogs.com/hejunlin1992/p/13384782.html

    [19] H Y ZHANG, M CISSE, Y N DAUPHIN et al. Mixup: beyond empirical risk minimization. https://arxiv.org/abs/1710.09412

    [20] H REZATOFIGHI, N TSOI, J GWAK et al. Generalized intersection over union: a metric and a loss for bounding box regression, 658-666(2019).

    [21] Wei CAI, Peiwei XU, Zhiyong YANG et al. Dim and small target detection in infrared image under complex background. Journal of Applied Optics, 42, 643-650(2021).

    [22] C LI, L LI, H JIANG et al. YOLOv6: a single-stage object detection framework for industrial applications. http://arxiv.org/pdf/2209.02976v1

    [23] C Y WANG, H Y M LIAO, Y H WU et al. CSPNet: a new backbone that can enhance learning capability of CNN, 390-391(2020).

    [24] J YU, Y JIANG, Z WANG et al. Unitbox: An advanced object detection network, 516-520(2016).

    [25] M EVERINGHAM, L VAN GOOL, C K I WILLIAMS et al. The PASCAL visual object classes challenge. International Journal of Computer Vision, 88, 303-338(2010).