• Photonics Research
  • Vol. 7, Issue 12, 1485 (2019)
Min-Jie Liu1,2, Jun Chen1,2,*, Yang Zhang1,2, Yan Shi1,2..., Chun-Liu Zhao1,2 and Shang-Zhong Jin1,2|Show fewer author(s)
Author Affiliations
  • 1College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
  • 2National Demonstration Base for International Science and Technology Cooperation on Micro/Nano-Fabrication & Optoelectronic Detection, China Jiliang University, Hangzhou 310018, China
  • show less
    DOI: 10.1364/PRJ.7.001485 Cite this Article Set citation alerts
    Min-Jie Liu, Jun Chen, Yang Zhang, Yan Shi, Chun-Liu Zhao, Shang-Zhong Jin, "Generation of coherence vortex by modulating the correlation structure of random lights," Photonics Res. 7, 1485 (2019) Copy Citation Text show less
    References

    [1] D. M. Palacios, I. D. Maleev, A. S. Marathay, G. A. Swartzlander. Spatial correlation singularity of a vortex field. Phys. Rev. Lett., 92, 143905(2004).

    [2] W. Wang, M. Takeda. Coherence current, coherence vortex, and the conservation law of coherence. Phys. Rev. Lett., 96, 223904(2006).

    [3] W. Wang, Z. Duan, S. G. Hanson, Y. Miyamoto, M. Takeda. Experimental study of coherence vortices: local properties of phase singularities in a spatial coherence function. Phys. Rev. Lett., 96, 073902(2006).

    [4] O. S. Magaña-Loaiza, M. Mirhosseini, R. M. Cross, S. M. H. Rafsanjani, R. W. Boyd. Hanbury Brown and Twiss interferometry with twisted light. Sci. Adv., 2, e1501143(2016).

    [5] M. P. J. Lavery, C. Peuntinger, K. Günthner, P. Banzer, D. Elser, R. W. Boyd, M. J. Padgett, C. Marquardt, G. Leuchs. Free-space propagation of high-dimensional structured optical fields in an urban environment. Sci. Adv., 3, e1700552(2017).

    [6] V. Kumar, B. Piccirillo, S. G. Reddy, R. P. Singh. Topological structures in vector speckle fields. Opt. Lett., 42, 466-469(2017).

    [7] Z. Yang, O. S. Magaña-loaiza, M. Mirhosseini, Y. Zhou, B. Gao, L. Gao, S. Mohammad, H. Rafsanjani, G.-l. Long, R. W. Boyd. Digital spiral object identification using random light. Light Sci. Appl., 6, e17013(2017).

    [8] A. B. Ortega, S. Bucio-Pacheco, S. Lopez-Huidobro, L. Perez-Garcia, F. J. Poveda-Cuevas, J. A. Seman, A. V. Arzola, K. Volke-Sepúlveda. Creation of optical speckle by randomizing a vortex-lattice. Opt. Express, 27, 4105-4115(2019).

    [9] F. Gori, M. Santarsiero, R. Borghi, S. Vicalvi. Partially coherent sources with helicoidal modes. J. Mod. Opt., 45, 539-554(1997).

    [10] T. D. Visser, G. Gbur, E. Wolf. Effect of the state of coherence on the three-dimensional spectral intensity distribution near focus. Opt. Commun., 213, 13-19(2002).

    [11] G. Gbur, T. D. Visser, E. Wolf. ‘Hidden’ singularities in partially coherent wavefields. J. Opt. A, 6, S239-S242(2004).

    [12] G. Gbur, T. D. Visser. Coherence vortices in partially coherent beams. Opt. Commun., 222, 117-125(2003).

    [13] J. Yu, X. Zhu, F. Wang, D. Wei, G. Gbur, Y. Cai. Experimental study of reducing beam wander by modulating the coherence structure of structured light beams. Opt. Lett., 44, 4371-4374(2019).

    [14] X. Liu, X. Peng, L. Liu, G. Wu, C. Zhao, F. Wang, Y. Cai. Self-reconstruction of the degree of coherence of a partially coherent vortex beam obstructed by an opaque obstacle. Appl. Phys. Lett., 110, 181104(2017).

    [15] G. Kulkarni, R. Sahu, O. S. Magaña-loaiza, R. W. Boyd, A. K. Jha. Single-shot measurement of the orbital-angular-momentum spectrum of light. Nat. Commun., 8, 1(2017).

    [16] F. Wang, X. Liu, Y. Cai. Propagation of partially coherent beam in turbulent atmosphere: a review. Prog. Electromagn. Res., 150, 123-143(2015).

    [17] C. Zhao, Y. Cai, X. Lu, H. T. Eyyuboglu. Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle. Opt. Express, 17, 1753-1765(2009).

    [18] J. M. Aunon, M. Nieto-Vesperinas. Partially coherent fluctuating sources that produce the same optical force as a laser beam. Opt. Lett., 38, 2869-2872(2013).

    [19] C. R. Alves, A. J. Jesus-Silva, E. J. S. Fonseca. Robustness of a coherence vortex. Appl. Opt., 55, 7544-7549(2016).

    [20] N. Montaut, O. S. Magaña-Loaiza, T. J. Bartley, V. B. Verma, S. W. Nam, R. P. Mirin, C. Silberhorn, T. Gerrits. Compressive characterization of telecom photon pairs in the spatial and spectral degrees of freedom. Optica, 5, 1418-1423(2018).

    [21] G. Gbur, T. D. Visser. The structure of partially coherent fields. Progress in Optics, 55, 285-341(2010).

    [22] Y. Altmann, S. McLaughlin, M. J. Padgett, V. K. Goyal, A. O. Hero, D. Faccio. Quantum-inspired computational imaging. Science, 361, eaat2298(2018).

    [23] Y. Shao, X. Lu, S. Konijnenberg, C. Zhao, Y. Cai, H. P. Urbach. Spatial coherence measurement and partially coherent diffractive imaging using self-referencing holography. Opt. Express, 26, 4479-4490(2018).

    [24] X. Lu, C. Zhao, Y. Shao, J. Zeng, S. Konijnenberg, X. Zhu, S. Popov, H. P. Urbach, Y. Cai. Phase detection of coherence singularities and determination of the topological charge of a partially coherent vortex beam. Appl. Phys. Lett., 114, 201106(2019).

    [25] R. Liu, F. Wang, D. Chen, Y. Wang, Y. Zhou, H. Gao, P. Zhang, F. Li. Measuring mode indices of a partially coherent vortex beam with Hanbury Brown and Twiss type experiment. Appl. Phys. Lett., 108, 051107(2016).

    [26] N. Zhao, X. Li, G. Li, J. M. Kahn. Capacity limits of spatially multiplexed free-space communication. Nat. Photonics, 9, 822-826(2015).

    [27] J. Wang. Advances in communications using optical vortices. Photon. Res., 4, B14-B28(2016).

    [28] J. Chen, Y. Li. Discrimination of incoherent vortex states of light. Opt. Lett., 43, 5595-5598(2018).

    [29] A. S. Desyatnikov, Y. S. Kivshar. Rotating optical soliton clusters. Phys. Rev. Lett., 88, 053901(2002).

    [30] L.-G. Wang, L.-Q. Wang, S.-Y. Zhu. Formation of optical vortices using coherent laser beam arrays. Opt. Commun., 282, 1088-1094(2009).

    [31] R. K. Singh, A. M. Sharma, P. Senthilkumaran. Vortex array embedded in a partially coherent beam. Opt. Lett., 40, 2751-2754(2015).

    [32] Z. Mei, O. Korotkova. Sources for random arrays with structured complex degree of coherence. Opt. Lett., 43, 2676-2679(2018).

    [33] J. Zeng, X. Liu, F. Wang, C. Zhao, Y. Cai. Partially coherent fractional vortex beam. Opt. Express, 26, 26830-26844(2018).

    [34] G. Piquero, M. Santarsiero, R. Martínez-Herrero, J. C. G. de Sande, M. Alonzo, F. Gori. Partially coherent sources with radial coherence. Opt. Lett., 43, 2376-2379(2018).

    [35] L. Rego, K. M. Dorney, N. J. Brooks, Q. L. Nguyen, C.-T. Liao, J. San Román, D. E. Couch, A. Liu, E. Pisanty, M. Lewenstein, L. Plaja, H. C. Kapteyn, M. M. Murnane, C. Hernández-García. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science, 364, eaaw9486(2019).

    [36] A. Lizana, H. Zhang, A. Turpin, A. V. Eeckhout, F. A. Torres-Ruiz, A. Vargas, C. Ramirez, F. Pi, J. Campos. Generation of reconfigurable optical traps for microparticles spatial manipulation through dynamic split lens inspired light structures. Sci. Rep., 8, 11263(2018).

    [37] J. Arlt, M. J. Padgett. Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam. Opt. Lett., 25, 191-193(2000).

    [38] Y. D. Liu, C. Q. Gao, M. W. Gao, F. Li. Coherent-mode representation and orbital angular momentum spectrum of partially coherent beam. Opt. Commun., 281, 1968-1975(2008).

    [39] S. Fu, C. Gao. Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams. Photon. Res., 4, B1-B4(2016).

    [40] H. Wang, L. Liu, C. Zhou, J. Xu, M. Zhang, S. Teng, Y. Cai. Vortex beam generation with variable topological charge based on a spiral slit. Nanophotonics, 8, 317-324(2019).

    [41] Y. Yang, X. Zhu, J. Zeng, X. Lu, C. Zhao, Y. Cai. Anomalous Bessel vortex beam: modulating orbital angular momentum with propagation. Nanophotonics, 7, 677-682(2018).

    [42] L. Mandel, E. Wolf. Optical Coherence and Quantum Optics(1995).

    [43] Q. Lin, Y. Cai. Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams. Opt. Lett., 27, 216-218(2002).

    [44] L. Chen, J. Lei, J. Romero. Quantum digital spiral imaging. Light Sci. Appl., 3, e153(2014).

    [45] Y. Yuan, D. Liu, Z. Zhou, H. Xu, J. Qu, Y. Cai. Optimization of the probability of orbital angular momentum for Laguerre-Gaussian beam in Kolmogorov and non-Kolmogorov turbulence. Opt. Express, 26, 21861-21871(2018).

    [46] I. S. Gradshteyn, I. M. Ryzhik. Table of Integrals, Series, and Products(2007).

    [47] Y. T. Zhang, C. L. Ding, L. Z. Pan, Y. J. Cai. Laser arrays of partially coherent beams with multi-Gaussian correlation function. J. Quant. Spectrosc. Radiat. Transfer, 218, 1-11(2018).

    [48] B. Perez-Garcia, A. Yepiz, R. I. Hernandez-Aranda, A. Forbes, G. A. Swartzlander. Digital generation of partially coherent vortex beams. Opt. Lett., 41, 3471-3474(2016).

    [49] S. Prabhakar, A. Kumar, J. Banerji, R. P. Singh. Revealing the order of a vortex through its intensity record. Opt. Lett., 36, 4398-4400(2011).

    [50] F. Wang, S. Zhu, Y. Cai. Experimental study of the focusing properties of a Gaussian Schell-model vortex beam. Opt. Lett., 36, 3281-3283(2011).

    [51] Y. Cai, Y. Chen, F. Wang. Generation and propagation of partially coherent beams with nonconventional correlation functions: a review invited. J. Opt. Soc. Am. A, 31, 2083-2096(2014).

    [52] X. Wan, Q. Zhang, T. Yi Chen, L. Zhang, W. Xu, H. Huang, C. Kun Xiao, Q. Xiao, T. J. Cui. Multichannel direct transmissions of near-field information. Light Sci. Appl., 8, 60(2019).

    Min-Jie Liu, Jun Chen, Yang Zhang, Yan Shi, Chun-Liu Zhao, Shang-Zhong Jin, "Generation of coherence vortex by modulating the correlation structure of random lights," Photonics Res. 7, 1485 (2019)
    Download Citation