• Acta Photonica Sinica
  • Vol. 47, Issue 11, 1123002 (2018)
AN Tao* and GONG Wei
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/gzxb20184711.1123002 Cite this Article
    AN Tao, GONG Wei. High Detectivity and Broadband Organic Photodetectors[J]. Acta Photonica Sinica, 2018, 47(11): 1123002 Copy Citation Text show less
    References

    [1] JANSEN-VAN VUUREN R D, ARMIN A, PANDEY A K, et al. Organic photodiodes: the future of full color detection and image sensing[J]. Advanced Materials, 2016, 28(24): 4766-4802.

    [2] BAIERL D, PANCHERI L, SCHMIDT M, et al. A hybrid CMOS-imager with a solution-processable polymer as photoactive layer[J]. Nature Communications, 2012, 3(6): 1175-1182.

    [3] KAZUKO N, YOSHIHIRO S, JUNJI H, et al. An over 120 dB simultaneous-capture wide-dynamic-range 1.6e- ultra-low-reset-noise organic-photoconductive-film CMOS image sensor[C]. International Solid-State Circuits Conference, IEEE, 2016, 110-111.

    [4] WANG X, LI Hong-fei, SU Zi-sheng, et al. Efficient organic near-infrared photodetectors based on lead phthalocyanine/C60 heterojunction[J]. Organic Electronics, 2014, 15(10): 2367-2371.

    [5] VALOUCH S, HNES C, KETTLITZ S W, et al. Solution processed small molecule organic interfacial layers for low dark current polymer photodiodes[J]. Organic Electronics, 2012, 13(11): 2727-2732.

    [6] BINDA M, IACCHETTI A, NATALI D, et al. High detectivity squaraine-based near infrared photodetector with nA/cm2 dark current[J]. Applied Physics Letters, 2011, 98(7): 32-35.

    [7] MORI M, HIROSE Y, SEGAWA M, et al. Thin organic photoconductive film image sensors with extremely high saturation of 8500 electrons/μm2[C]. Digest of Technical Paper-Symposium on VLSI Technology. VLSI Circuits, 2013, 22-23.

    [8] SEO H, SAKAI T, OHTAKE H. Stacked organic photoconductive films and thin-film transistor circuits separated by thin silicon nitride for a color image sensor[C]. SENSORS, IEEE, 2014, 1672-1675.

    [9] CHEN Fang-chung, CHIEN Shang-chieh, CIOUS Guan-lin. Highly sensitive, low-voltage, organic photomultiple photodetectors exhibiting broadband response[J]. Applied Physics Letters, 2010, 97(10): 195-198.

    [10] SHIN H, KIM J, LEE C. Ternary bulk heterojunction for wide spectral range organic photodetectors[J]. Journal of the Korean Physical Society, 2017, 71: 196-202.

    [12] NIE Ri-ming, ZHAO Ze-jia, DENG Xian-yu. Roles of electrode interface on the performance of organic photodetectors[J]. Synthetic Metals, 2017, 227: 163-169.

    [13] LYONS D M, ARMIN A, STOLTERFOHT M, et al. Narrow band green organic photodiodes for imaging[J]. Organic Electronics, 2014, 15(11): 2903-2911.

    [14] NIE Ri-ming, DENG Xian-yu, LEI Feng, et al. Highly sensitive and broadband organic photodetectors with fast speed gain and large linear dynamic range at low forward Bias[J]. Small, 2017, 13(24): 1603260.

    [15] WANG Yue, ZHU Li-jie, HU Yu-feng, et al. High sensitivity and fast response solution processed polymer photodetectors with polyethylenimine ethoxylated (PEIE) modified ITO electrode[J]. Optics Express, 2017, 25(7): 7719-7729.

    [16] LI Ling-liang, ZHANG Fu-jun, WANG Wen-bin, et al. Trap-assisted photomultiplication polymer photodetectors obtaining an external quantum efficiency of 37500%[J]. Applied Materials & Interfaces, 2015, 7(10): 5890-5897.

    [17] YONG J C, LEE J Y, CHIN B D, et al. Polymer bulk heterojunction photovoltaics employing a squaraine donor additive[J]. Organic Electronics, 2013, 14(4): 1081-1085.

    [18] WU Zhen-wu, LIU Yang, WEI Shang-jiang, et al. Spectrum response enhancement of organic solar cell using a poly(3-hexylthiophene) photosensitizing layer[J]. Acta Physico-Chimica Sinica, 2013, 29(8): 1735-1744.

    [19] HUANG Jing-song, GOH Teng-hooi, LI Xiao-kai, et al. Polymer bulk heterojunction solar cells employing Frster resonance energy transfer[J]. Nature Photonics, 2013, 7(6): 479-485.

    [20] WEI Guo-dan, WANG Si-yi, RENSHAW K, et al. Solution-processed squaraine bulk heterojunction photovoltaic cells[J]. Acs Nano, 2010, 4(4): 1927-1934.

    [21] LI Ai-yuan, MIAO Xin-rui, DENG Xian-yu. Strong electron acceptor additive for achieving efficient polymer solar cells with P3HT: PCBM films by a quick drying process[J]. Synthetic Metals, 2013, 168(1): 43-47.

    [22] DENG Li-juan, ZHAO Su-lin, XU-Zheng , et al. Mechanism of ternary polymer solar cells based on P3HT: PTB7-Th: PCBM[J]. Acta Physica Sinica, 2016, 65(7): 331-336.

    [23] LI Wei-ming, GUO Jin-chuan, ZHOU Bin. Impact of buffer interlayer on performance of heterojunction organic photovoltaic devices[J]. Acta Photonica Sinica, 2012, 41(8): 972-976.

    [24] SOULTATI A, GEORGIADOU D G, DOUVAS A, et al. The role of metal/metal oxide/organic anode interfaces in efficiency and stability of bulk heterojunction organic photodetectors[J].Microelectronic Engineering, 2014, 117(4): 13-17.

    [25] LEEM D S, LEE K H, KWON Y N, et al. Low dark current inverted organic photodetectors employing MoOx: Al cathode interlayer[J]. Organic Electronics, 2015, 24: 176-181.

    CLP Journals

    [1] AN Tao, LIU Xin-ying. Photoelectronics Multiplication Organic Photodetecors with Controllable Operating Voltage[J]. Acta Photonica Sinica, 2019, 48(10): 1004002

    AN Tao, GONG Wei. High Detectivity and Broadband Organic Photodetectors[J]. Acta Photonica Sinica, 2018, 47(11): 1123002
    Download Citation