• Journal of Terahertz Science and Electronic Information Technology
  • Vol. 20, Issue 6, 513 (2022)
SHI Mingxia1、2、*, WANG Huanling1、2, CHEN Feiliang1、2, LI Mo1、2, and ZHANG Jian1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11805/tkyda2022062 Cite this Article
    SHI Mingxia, WANG Huanling, CHEN Feiliang, LI Mo, ZHANG Jian. Progress in the study of irradiation effects of graphene and graphene field effect transistors[J]. Journal of Terahertz Science and Electronic Information Technology , 2022, 20(6): 513 Copy Citation Text show less
    References

    [1] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al. Electric field effect in atomically thin carbon films[J]. Science, 2004,306 (5696):666-669.

    [2] LEMME M C,ECHTERMEYER T J,BAUS M,et al. A graphene field-effect device[J]. IEEE Electron Device Letters, 2007,28(4): 282-284.

    [3] KOGA R,PINKERTON S D,MOSS S C,et al. Observation of single event upsets in analog microcircuits[J]. IEEE Transactions on Nuclear Science, 1993,40(6):1838-1844.

    [4] ISLAM M R,HAQUE M A,FAHIM-AL-FATTAH M,et al. Dynamic performance of graphene field effect transistor with contact resistance[C]// 2016 5th International Conference on Informatics,Electronics and Vision(ICIEV). Dhaka,Bangladesh:IEEE, 2016: 21-25.

    [5] GEIM A K,GRIGORIEVA I V. Van der Waals heterostructures[J]. Nature, 2013,499(7459):419-425.

    [6] NETO A H C,GUINEA F,PERES N M R,et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009,81 (1):109.

    [7] GEIM A K,NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007(6):183-191.

    [9] SUN J, SCHMIDT M E, MURUGANATHAN M, et al. Large-scale nanoelectromechanical switches based on directly deposited nanocrystalline graphene on insulating substrates[J]. Nanoscale, 2016,8(12):6659-6665.

    [15] CLAEYS C,SIMOEN E. Radiation effects of advanced semiconductor materials and devices[M]. [S.l.]:Springer, 2008.

    [17] VAN-LINT V A J,FLANAGAN T M,LEADON R E,et al. Mechanisms of radiation effects in electronic materials. Volume 1[J]. New York:Wiley-Interscience, 1980.

    [20] ZHANG E X,NEWAZ A K M,WANG B,et al. Low-energy X-ray and ozone-exposure induced defect formation in graphene materials and devices[J]. IEEE Transactions on Nuclear Science, 2011,58(6):2961-2967.

    [21] PUZYREV Y S, WANG B, ZHANG E X, et al. Surface reactions and defect formation in irradiated graphene devices[J]. IEEE Transactions on Nuclear Science, 2012,59(6):3039-3044.

    [22] ECKMANN A,FELTEN A,MISHCHENKO A,et al. Probing the nature of defects in graphene by Raman spectroscopy[J]. Nano Letters, 2012,12(8):3925-3930.

    [23] WU J Q, ZHANG Y, WANG B, et al. Effects of X-ray irradiation on the structure and field electron emission properties of vertically aligned few-layer graphene[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013(304):49-56.

    [24] XI K,BI J S,HU Y,et al. Impact of γ-ray irradiation on graphene nano-disc non-volatile memory[J]. Applied Physics Letters, 2018,113(16):164103.

    [25] ELIAS D C,NAIR R R,MOHIUDDIN T M G,et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphene[J]. Science, 2009,323(5914):610-613.

    [27] YANG G,KIM B J,KIM K,et al. Energy and dose dependence of proton-irradiation damage in graphene[J]. RSC Advances, 2015, 5(40):31861-31865.

    [28] MEYER J C,KISIELOWSKI C,ERNI R,et al. Direct imaging of lattice atoms and topological defects in graphene membranes[J]. Nano Letters, 2008,8(11):582-586.

    [29] BANHART F,KOTAKOSKI J,KRASHENINNIKOV A V. Structural defects in graphene[J]. ACS Nano, 2011,5(1):26-41.

    [30] ZHAO S, XUE J, WANG Y, et al. Effect of SiO2 substrate on the irradiation-assisted manipulation of supported graphene: a molecular dynamics study[J]. Nanotechnology, 2012,23(28):285703.

    [31] ANASTASI A A,VALSESIA A,COLPO P,et al. Raman spectroscopy of gallium ion irradiated graphene[J]. Diamond and Related Materials, 2018(89):163-173.

    [32] KRASHENINNIKOV A V,NORDLUND K. Ion and electron irradiation-induced effects in nanostructured materials[J]. Journal of Applied Physics, 2010,107(7):071301.

    [33] KO G,KIM H Y,REN F,et al. Electrical characterization of 5 MeV proton-irradiated few layer graphene[J]. Electrochemical and Solid State Letters, 2010,13(4):K32.

    [34] MATHEW S,CHAN T K,ZHAN D,et al. The effect of layer number and substrate on the stability of graphene under MeV proton beam irradiation[J]. Carbon, 2011,49(5):1720-1726.

    [36] SHI T,PENG Q,BAI Z,et al. Proton irradiation of graphene: insights from atomistic modeling[J]. Nanoscale, 2019,11(43):20754-20765.

    [37] WANG Q, SHAO Y, GE D, et al. Surface modification of multilayer graphene using Ga ion irradiation[J]. Journal of Applied Physics, 2015,117(16):165303.

    [38] BARDARSON J H,TWORZYD.O J,BROUWER P W,et al. One-parameter scaling at the Dirac point in graphene[C]// 2008 APS March Meeting. New Orleans,Louisiana:[s.n.], 2008.

    [39] SUZUURA H, ANDO T. Crossover from symplectic to orthogonal class in a two-dimensional honeycomb lattice[J]. Physical Review Letters, 2002,89(26):266603.

    [40] LEE S,SEO J,HONG J,et al. Proton irradiation energy dependence of defect formation in graphene[J]. Applied Surface Science, 2015(344):52-56.

    [41] STAUBER T,PERES N M R,GUINEA F. Electronic transport in graphene:a semiclassical approach including midgap states[J]. Physical Review B, 2007,76(20):205423.

    [42] HENTSCHEL M,GUINEA F. Orthogonality catastrophe and Kondo effect in graphene[J]. Physical Review B, 2007,76(11): 115407.

    [43] LEE C, KIM J, KIM S J, et al. Strong hole-doping and robust resistance-decrease in proton-irradiated graphene[J]. Scientific Reports, 2016,6(1):21311.

    [44] SANYAL B. Conductivity engineering of graphene by defect formation[C]// 2009 APS March Meeting. Pittsburgh,Pennsylvania: [s.n.], 2009:26.

    [45] MUELLER T,XIA F,AVOURIS P. Graphene photodetectors for high-speed optical communications[J]. Nature Photonics, 2010,4 (5):297-301.

    [48] HAN S J,CHEN Z,BOL A A,et al. Channel-length-dependent transport behaviors of graphene field-effect transistors[J]. IEEE Electron Device Letters, 2011,32(6):812-814.

    [49] FRANCIS S A,PETROSKY J C,MCCLORY J W,et al. Effects of proton and X-ray irradiation on graphene field-effect transistors with thin gate dielectrics[J]. IEEE Transactions on Nuclear Science, 2014,61(6):3010-3017.

    [50] CAZALAS E,HOGSED M R,VANGALA S,et al. Gamma-ray radiation effects in graphene-based transistors with h-BN nanometer film substrates[J]. Applied Physics Letters, 2019,115(22):223504.

    [51] JAIN S,GUPTA A,SHINDE V,et al. Application of mono layered graphene field effect transistors for Gamma radiation detection [C]// 2018 IEEE 13th Nanotechnology Materials and Devices Conference(NMDC). Portland,Oregon,USA:IEEE, 2018:1-4.

    [52] OLDHAM T R,MCLEAN F B. Total ionizing dose effects in MOS oxides and devices[J]. IEEE Transactions on Nuclear Science, 2003,50(3):483-499.

    [53] SALZMANN B, BERNARD C, HEMMI A, et al. Remote doping of graphene on SiO2 with 5 keV X-rays in air[J]. Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films, 2018,36(2):020603.

    [54] KAMEDULSKI P,TRUSZKOWSKI S,LUKASZEWICZ J P. Highly effective methods of obtaining N-doped graphene by Gamma irradiation[J]. Materials, 2020,13(21):4975.

    [55] JAIN S,GAJARUSHI A S,GUPTA A,et al. A passive gamma radiation dosimeter using graphene field effect transistor[J]. IEEE Sensors Journal, 2019,20(6):2938-2944.

    [56] HAN M X,JI Z Y,SHANG L W,et al. γ radiation caused graphene defects and increased carrier density[J]. Chinese Physics B, 2011,20(8):086102.

    [57] FAN L, BI J, XI K, et al. Impact of γ-ray irradiation on graphene-based hall sensors[J]. IEEE Sensors Journal, 2021, 21(14): 16100-16106.

    [58] ZENG J,LIU J,ZHANG S,et al. Graphene electrical properties modulated by swift heavy ion irradiation[J]. Carbon, 2019(154): 244-253.

    [59] ZHOU Y B,LIAO Z M,WANG Y F,et al. Ion irradiation induced structural and electrical transition in graphene[J]. The Journal of Chemical Physics, 2010,133(23):234703.

    [60] WANG L,FAN X,LI W,et al. Space irradiation-induced damage to graphene films[J]. Nanoscale, 2017,9(35):13079-13088.

    [61] WANG Q, LIU S, REN N. Manipulation of transport hysteresis on graphene field effect transistors with Ga ion irradiation[J]. Applied Physics Letters, 2014,105(13):133506.

    [62] HAJATI Y, BLOM T, JAFRI S H M, et al. Improved gas sensing activity in structurally defected bilayer graphene[J]. Nanotechnology, 2012,23(50):505501.

    [63] EAPEN J,KRISHNA R,BURCHELL T D,et al. Early damage mechanisms in nuclear grade graphite under irradiation[J]. Materials Research Letters, 2014,2(1):43-50.

    [64] OUSEPH P J. Observation of prismatic dislocation loops in graphite by scanning tunneling microscope[J]. Physica Status Solidi(A), 1998,169(1):25-32.

    [65] KRISHNA R, JONES A N, MCDERMOTT L, et al. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy[J]. Journal of Nuclear Materials, 2015,467(2):557-565.

    [66] KARTHIK C,KANE J,BUTT D P,et al. In situ transmission electron microscopy of electron-beam induced damage process in nuclear grade graphite[J]. Journal of Nuclear Materials, 2011,412(3):321-326.

    SHI Mingxia, WANG Huanling, CHEN Feiliang, LI Mo, ZHANG Jian. Progress in the study of irradiation effects of graphene and graphene field effect transistors[J]. Journal of Terahertz Science and Electronic Information Technology , 2022, 20(6): 513
    Download Citation