• Photonics Research
  • Vol. 7, Issue 10, 1193 (2019)
Junchao Zhou1、2、3, Wenrui Zhang4, Mingzhao Liu4, and Pao Tai Lin1、2、3、*
Author Affiliations
  • 1Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, USA
  • 2Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
  • 3Center for Remote Health Technologies and Systems, Texas A&M University, College Station, Texas 77843, USA
  • 4The Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
  • show less
    DOI: 10.1364/PRJ.7.001193 Cite this Article Set citation alerts
    Junchao Zhou, Wenrui Zhang, Mingzhao Liu, Pao Tai Lin, "Broadband mid-infrared second harmonic generation using epitaxial polydomain barium titanate thin films," Photonics Res. 7, 1193 (2019) Copy Citation Text show less
    References

    [1] D. Damjanovic, P. Muralt, N. Setter. Ferroelectric sensors. IEEE Sens. J., 1, 191-206(2001).

    [2] A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, A. Barthelemy. Solid-state memories based on ferroelectric tunnel junctions. Nat. Nanotechnol., 7, 101-104(2012).

    [3] D. Sando, Y. Yang, C. Paillard, B. Dkhil, L. Bellaiche, V. Nagarajan. Epitaxial ferroelectric oxide thin films for optical applications. Appl. Phys. Rev., 5, 041108(2018).

    [4] C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, H. X. Tang. Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices. Nano Lett., 14, 1419-1425(2014).

    [5] N. Bloembergen. Nonlinear Optics(1996).

    [6] A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, R. Baets. On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies. Sci. Rep., 7, 44581(2017).

    [7] L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, J. W. Pierce. Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3. J. Opt. Soc. Am. B, 12, 2102-2116(1995).

    [8] M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, G. W. Turner. Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation. Nat. Photonics, 1, 288-292(2007).

    [9] H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, S. N. Zhu. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. Phys. Rev. Lett., 113, 103601(2014).

    [10] S. Arahira, N. Namekata, T. Kishimoto, H. Yaegashi, S. Inoue. Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ(2) processes in a periodically poled LiNbO3 ridge waveguide. Opt. Express, 19, 16032-16043(2011).

    [11] O. Alibart, V. D’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, S. Tanzilli. Quantum photonics at telecom wavelengths based on lithium niobate waveguides. J. Opt., 18, 104001(2016).

    [12] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, R. Ramesh. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 299, 1719-1722(2003).

    [13] K. Suzuki, D. Fu, K. Nishizawa, T. Miki, K. Kato. Ferroelectric property of alkoxy-derived YMnO3 films crystallized in argon. Jpn. J. Appl. Phys., 42, 5692-5695(2003).

    [14] S. Raghavan, T. Schumann, H. Kim, J. Y. Zhang, T. A. Cain, S. Stemmer. High-mobility BaSnO3 grown by oxide molecular beam epitaxy. APL Mater., 4, 016106(2016).

    [15] R. A. McKee, F. J. Walker, M. F. Chisholm. Physical structure and inversion charge at a semiconductor interface with a crystalline oxide. Science, 293, 468-471(2001).

    [16] C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, V. Narayanan. Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode. Nat. Nanotechnol., 8, 748-754(2013).

    [17] B. W. Wessels. Ferroelectric epitaxial thin films for integrated optics. Ann. Rev. Mater. Res., 37, 659-679(2007).

    [18] D. M. Gill, C. W. Conrad, G. Ford, B. W. Wessels, S. T. Ho. Thin-film channel waveguide electro-optic modulator in epitaxial BaTiO3. Appl. Phys. Lett., 71, 1783-1785(1997).

    [19] Y. Garbovskiy, A. Glushchenko. Optical/ferroelectric characterization of BaTiO3 and PbTiO3 colloidal nanoparticles and their applications in hybrid materials technologies. Appl. Opt., 52, E34-E39(2013).

    [20] M. K. Trivedi, G. Nayak, S. Patil, R. M. Tallapragada, O. Latiyal, S. Jana. Impact of biofield treatment on atomic and structural characteristics of barium titanate powder. Indus. Eng. Manage., 4, 166(2015).

    [21] P. T. Lin, Z. Liu, B. W. Wessels. Ferroelectric thin film photonic crystal waveguide and its electro-optic properties. J. Opt. A, 11, 075005(2009).

    [22] A. Petraru, M. Siegert, M. Schmid, J. Schubert, Ch. Buchal. Ferroelectic BaTiO3 thin film optical waveguide modulators. Ferroelectric Thin Films X, 688, 279-284(2002).

    [23] T. Zhao, H. Lu, F. Chen, G. Yang, Z. Chen. Stress-induced enhancement of second-order nonlinear optical susceptibilities of barium titanate films. J. Appl. Phys., 87, 7448-7451(2000).

    [24] M. B. Lee, M. Kawasaki, M. Yoshimoto, H. Koinuma. Heteroepitaxial growth of BaTiO3 films on Si by pulsed laser deposition. Appl. Phys. Lett., 66, 1331-1333(1995).

    [25] M. H. M. Hsu, D. Van Thourhout, M. Pantouvaki, J. Meersschaut, T. Conard, O. Richard, H. Bender, P. Favia, M. Vila, R. Cid. Controlled orientation of molecular-beam-epitaxial BaTiO3 on Si (001) using thickness engineering of BaTiO3 and SrTiO3 buffer layers. Appl. Phys. Express, 10, 065501(2017).

    [26] T. Zhao, Z. H. Chen, F. Chen, W. S. Shi, H. B. Lu, G. Z. Yang. Enhancement of second-harmonic generation in BaTiO3/SrTiO3 superlattices. Phys. Rev. B, 60, 1697-1700(1999).

    [27] E. Kim, A. Steinbrück, M. T. Buscaglia, V. Buscaglia, T. Pertsch, R. Grange. Second-harmonic generation of single BaTiO3 nanoparticles down to 22  nm diameter. ACS Nano, 7, 5343-5349(2013).

    [28] B. Bihari, J. Kumar, G. T. Stauf, P. C. Van Buskirk, C. S. Hwang. Investigation of barium titanate thin films on MgO substrates by second-harmonic generation. J. Appl. Phys., 76, 1169-1174(1994).

    [29] F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, E. A. Whittaker. Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission. IEEE J. Quantum Electron., 38, 511-532(2002).

    [30] P. T. Lin, H.-Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, A. Agarwal. Label-free glucose sensing using chip-scale mid-infrared integrated photonics. Adv. Opt. Mater., 4, 1755-1759(2016).

    [31] D. Farrah, J. Bernard-Salas, H. W. W. Spoon, B. T. Soifer, L. Armus, B. Brandl, V. Charmandaris, V. Desai, S. Higdon, D. Devost, J. Houck. High-resolution mid-infrared spectroscopy of ultraluminous infrared galaxies. Astrophys. J., 667, 149-169(2007).

    [32] P. R. Christensen, B. M. Jakosky, H. H. Kieffer, M. C. Malin, H. Y. McSween, K. Nealson, G. L. Mehall, S. H. Silverman, S. Ferry, M. Caplinger, M. Ravine. The thermal emission imaging system (THEMIS) for the Mars 2001 Odyssey Mission. Space Sci. Rev., 110, 85-130(2004).

    [33] T. Jin, J. Zhou, H.-Y. Lin, P. T. Lin. Mid-infrared chalcogenide waveguides for real-time and non-destructive volatile organic compounds detection. Anal. Chem., 91, 817-822(2018).

    [34] J. Zhou, P. T. Lin. Mid-infrared multi-spectral detection for real-time and non-invasive analysis of structure and composition of materials. ACS Sens., 3, 1322-1328(2018).

    [35] H. D. Megaw. Origin of ferroelectricity in barium titanate and other perovskite-type crystals. Acta Crystallogr., 5, 739-749(1952).

    [36] S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, V. Gopalan. Probing ferroelectrics using optical second harmonic generation. J. Am. Ceram. Soc., 94, 2699-2727(2011).

    [37] O. Diéguez, K. M. Rabe, D. Vanderbilt. First-principles study of epitaxial strain in perovskites. Phys. Rev. B, 72, 144101(2005).

    Junchao Zhou, Wenrui Zhang, Mingzhao Liu, Pao Tai Lin, "Broadband mid-infrared second harmonic generation using epitaxial polydomain barium titanate thin films," Photonics Res. 7, 1193 (2019)
    Download Citation