• Journal of Advanced Dielectrics
  • Vol. 11, Issue 4, 2150016 (2021)
Sherif Haggag1、*, Loai Nasrat2, and and Hanafy Ismail1
Author Affiliations
  • 1Faculty of Engineering, Department of Power and Machines Ain Shams University, Cairo, Egypt
  • 2Faculty of Engineering Department of Electrical Engineering Aswan University, Aswan, Egypt
  • show less
    DOI: 10.1142/s2010135x21500168 Cite this Article
    Sherif Haggag, Loai Nasrat, and Hanafy Ismail. ANN approaches to determine the dielectric strength improvement of MgO based low density polyethylene nanocomposite[J]. Journal of Advanced Dielectrics, 2021, 11(4): 2150016 Copy Citation Text show less
    References

    [1] X. He, J. Zhou, L. Jin, X. Long, H. Wu, L. Xu, Y. Gong and W. Zhou, Improved dielectric properties of thermoplastic polyure-thane elastomer filled with core–shell structured PDA@TiC parti-cles, Materials 15, 13 (2020).

    [2] Y. Zhou, J. Hu, B. Dang and J. He, Titanium oxide nanoparticle increases shallow traps to suppress space charge accumulation in polypropylene dielectrics, RSC Adv. 6(54), 48720–48727 (2016).

    [3] J. Parameswaranpillai, S. Thomas and Y. Grohens, Characteriza-tion of Polymer Blends: Miscibility, Morphology, and Interfaces, 1st edn., eds. S. Thomas, Y. Grohens and P. Jyotishkumar (Wiley-VCH, 2015), pp. 1–5.

    [4] L. S. Schadler and J. K. Nelson, Polymer nanodielectrics - Short history and future perspective, J. Appl. Phys. 128, 12 (2020).

    [5] L. K. H. Pallon, A. T. Hoang, A. M. Pourrahimi, M. S. Heden-qvist, F. Nilsson, S. Gubanski, U. W. Geddea and R. T. Olsson, The impact of MgO nanoparticle interface in ultra-insulating polyeth-ylene nanocomposites for high voltage DC cables, J. Mater. Chem. A 4(22), 8481–8916 (2016).

    [6] Y. Hayse, H. Aoyama, K. Matsui, Y. Tanaka, T. Takada and Y. Murata, Space charge formation in LDPE/MgO nano-composite film under ultra-high DC electric stress, IEEJ Trans. FM 126(11), 1084–1089 (2006).

    [7] Y. Murakami, M. Nemoto, S. Okuzumi, S. Masuda, M. Nagao, N. Hozumi and Y. Sekiguchi, DC conduction and electrical break-down of MgO/LDPE nanocomposite, IEEE Trans. Dielectr. Electr. Insul. 15(1), 33–39 (2008).

    [8] S. Peng, J. He, J. Hu, X. Huang and P. Jiang, Influence of func-tionalized MgO nanoparticles on electrical properties of polyeth-ylene nanocomposites, IEEE Trans. Dielectr. Electr. Insul. 22(3), 1512–1519 (2015).

    [9] Y. Murata, Y. Sekiguchi, Y. Inoue and M. Kanaoka, Investigation of electrical phenomena of inorganic-filler/LDPE nanocomposite material, Int. Symp. Electr. Insulating Materials (ISEIM), Vol. 3 (2005), pp. 650–653.

    [10] A. Bojovschi, T. V. Quoc, H. N. Trung, D. T. Quang and T. C. Le, Environmental effects on HV dielectric materials and related sens-ing technologies, Appl. Sci. 9(5), 2–15 (2019).

    [11] F. Z. Haque, R. Nandanwar and P. Singh, Evaluating photodeg-radation properties of anatase and rutile TiO2 nanoparticles for organic compounds, Optik 128(10), 191–200 (2017).

    [12] N. M. K. Abdel-Gawad, D. A. Mansour, A. Z. El Dein, H. M. Ahmed and M. M. F. Darwish, Effect of functionalized TiO2 nanoparticles on dielectric properties of PVC nanocomposites used in electrical insulating cables, MEPCON 18, 693–698 (2016).

    [13] H.-S. Jung, D.-S. Moon and J.-K. Lee, Quantitative analysis and efficient surface modification of silica nanoparticles, J. Nano-mater. 2012, 1–8 (2012).

    [14] https://materialsproject.org/materials/mp-1265/.

    [15] S. Z. A. Dabbak, H. A. I. B. C. Ang, N. A. A. Latiff and M. Z. H. Makmud, Electrical properties of polyethylene/polypropylene compounds for high-voltage insulation, Energies 1148(11), 6 (2018).

    [16] The Mathworks Inc., Matlab, R2020b [computer program] (2020).

    [17] S. Grzybowski, E. A. Feilat, P. Knight and L. Doriott, Breakdown voltage behavior of PET thermoplastics at DC and AC voltages, Proc. IEEE Southeastcon’99. Technology on the Brink of 2000 (1999), pp. 284–287.

    [18] K. Elanseralathan, M. J. Thomas and G. R. Nagabhushana, Break-down of solid insulating materials under high frequency high voltage stress, Proc. 6th Int. Conf. Properties and Applications of Dielectric Materials (1999), pp. 999–1001.

    [19] T. Tanaka, M. Kozako, N. Fuse and Y. Ohki, Proposal of a multi-core model for polymer nanocomposite dielectrics, IEEE Trans. Dielectr. Electr. Insul. 12(4), 669–681 (2005).

    [20] T. J. Lewis, Interfaces are the dominant feature of dielectrics at the nanometric level, IEEE Trans. Dielectr. Electr. Insul. 11(5), 739–753 (2004).

    [21] J. B. Hasted, D. M. Ritson and C. H. Collie, Dielectric properties of aqueous ionic solutions. Parts I and II., J. Chem. Phys. 16,1 (1948).

    [22] N. Gavish and K. Promislow, Dependence of the dielectric con-stant of electrolyte solutions on ionic concentration., Phys. Rev. 94, 1 (2016).

    Sherif Haggag, Loai Nasrat, and Hanafy Ismail. ANN approaches to determine the dielectric strength improvement of MgO based low density polyethylene nanocomposite[J]. Journal of Advanced Dielectrics, 2021, 11(4): 2150016
    Download Citation