• Chinese Journal of Lasers
  • Vol. 43, Issue 4, 402006 (2016)
Zhou Dongjian1、2、*, Guo Jingwei1, Zhou Canhua1, Zhao Weili3, Liu Jinbo1, Liu Dong1、2, and Jin Yuqi1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/cjl201643.0402006 Cite this Article Set citation alerts
    Zhou Dongjian, Guo Jingwei, Zhou Canhua, Zhao Weili, Liu Jinbo, Liu Dong, Jin Yuqi. Backward Raman Scattering and Amplification Based on Dual Raman Cells[J]. Chinese Journal of Lasers, 2016, 43(4): 402006 Copy Citation Text show less
    References

    [1] Zhang Wenhui, Ding Shuanghong, Ding Ze, et al.. A PbWO4 solid-state Raman amplifier excited by 1064 nm nanosecond pulser[J]. Chinese J Lasers, 2014, 41(5): 0502011.

    [2] D J Zhou, J W Guo, C H Zhou, et al.. Intracavity CH4 Raman laser using negative-branch unstable resonator[J]. Opt Commun, 2015, 356: 49-53.

    [3] X L Cai, C H Zhou, D J Zhou, et al.. H2 stimulated Raman scattering in a multi-pass cell with a Herriott configuration[J]. Chin Phys Lett, 2015, 32(11): 114207.

    [4] S H Ding, X Y Zhang, Q P Wang, et al.. Temporal properties of the solid-state intracavity Raman laser using the traveling-wave method [J]. Phys Rev A, 2007, 76(5): 053830.

    [5] F F Su, X Y Zhang, W T Wang, et al.. High-efficient diode-pumped actively Q-switched Nd∶YAG/KTP Raman laser at 1096 nm wavelength[J]. Opt Commun, 2013, 305: 201-203.

    [6] B S Wang, J Y Peng, J G Miao, et al.. Diode end-pumped passively Q-switched Nd3+∶GdVO4 self-Raman laser at 1176 nm[J]. Chin Phys Lett, 2007, 24(1): 112-114.

    [7] Wang Zefeng, Yu Fei, William Wadsworth, et al.. Single-pass high-gain 1.9 μm optical fiber gas Raman laser[J]. Acta Optica Sinica, 2014, 34(8): 0814004.

    [8] Cao Kaifa, Huang Jian, Hu Shunxing. Investigation of stimulated Raman scattering characteristics in D2, H2 and D2/H2 mixtures[J]. Acta Optica Sinica, 2015, 35(3): 0319001.

    [9] Ye Zhenhuan, Lou Qihong, Dong Jingxing, et al.. Experimental research on backward SRS pumped by high power KrF laser[J]. Chinese J Lasers, 2003, 30(3): 223-226.

    [10] D C Hanna, D J Pointer, D J Pratt. Stimulated Raman-scattering of picosecond light-pulses in hydrogen, deuterium, and methane[J]. IEEE J Quantum Electron, 1983, 22(2): 332-336.

    [11] W R Trutna, Y K Park, R L Byer. Dependence of Raman gain on pump laser bandwidth[J]. IEEE J Quantum Electron, 1979, 15(7): 648- 655.

    [12] W K Bischel, M J Dyer. Temperature-dependence of the Raman linewidth and line shift for the Q (1) and Q (0) transitions in normal and para-H2[J]. Phys Rev A, 1986, 33(5): 3113-3123.

    [13] W P Hooper, G M Frick, B P Michael. Using backward Raman scattering from coupled deuterium cells for wavelength shifting[J]. Opt Eng, 2009, 48(8): 084302.

    [14] Hua Xiaoqing, Leng Jing, Yang Heping, et al.. Generation of intense backward stimulated Raman scattering in H2-He mixture pumped by single longitudinal mode Nd∶YAG laser[J]. Chinese J Lasers, 2006, 33(4): 451-455.

    [15] A Kazzaz, S Ruschin, I Shoshan, et al.. Stimulated Raman scattering in methane-experimental optimization and numerical model[J]. IEEE J Quantum Electron, 1994, 30(12): 3017-3024.

    [16] J P Lin, H M Pask, A J Lee, et al.. Study of relaxation oscillations in continuous-wave intracavity Raman lasers[J]. Opt Express, 2010, 18(11): 11530-11536.

    [17] D C Parrotta, W Lubeigt, A J Kemp, et al.. Multi-Watt, continuous-wave, tunable diamond Raman laser with intracavity frequency doubling to the visible region[J]. IEEE J Sel Top Quantum Electron, 2013, 19(4): 1400108.

    [18] S Marchetti, R Simili, C Gabbanini. Origin of backward to forward wave dominance in broadband Raman scattering in hydrogen[J]. Opt Commun, 2011, 284(1): 441-445.

    CLP Journals

    [1] Du Yanxiong, Yang Jinbo, Lü Qingxian, Yan Hui. Application of Quantum Shortcut to Adiabaticity in Stimulated Raman Adiabatic Transfer[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120002

    Zhou Dongjian, Guo Jingwei, Zhou Canhua, Zhao Weili, Liu Jinbo, Liu Dong, Jin Yuqi. Backward Raman Scattering and Amplification Based on Dual Raman Cells[J]. Chinese Journal of Lasers, 2016, 43(4): 402006
    Download Citation