• Acta Physica Sinica
  • Vol. 69, Issue 2, 029401-1 (2020)
Xiao-Li Zhu, Yao-Gai Hu*, Zheng-Yu Zhao, and Yuan-Nong Zhang
DOI: 10.7498/aps.69.20191266 Cite this Article
Xiao-Li Zhu, Yao-Gai Hu, Zheng-Yu Zhao, Yuan-Nong Zhang. Comparison between ionospheric disturbances caused by barium and cesium[J]. Acta Physica Sinica, 2020, 69(2): 029401-1 Copy Citation Text show less
Flow chart of simulation algorithm.仿真算法流程图
Fig. 1. Flow chart of simulation algorithm.仿真算法流程图
Density distribution of Ba+ and O+ (in x-y plane) after 10 kg barium released at 300 km while no neutral wind is considered: (a) Ba+, t = 5 s; (b) Ba+, t = 30 s; (c) Ba+, t = 200 s; (d) O+, t = 5 s; (e) O+, t = 30 s; (f) O+, t = 200 s.无中性风场时, 300 km高度释放10 kg钡后钡离子和氧离子的离子数密度分布(x-y平面) (a) Ba+, t = 5 s; (b) Ba+, t = 30 s; (c) Ba+, t = 200 s; (d) O+, t = 5 s; (e) O+, t = 30 s; (f) O+, t = 200 s
Fig. 2. Density distribution of Ba+ and O+ (in x-y plane) after 10 kg barium released at 300 km while no neutral wind is considered: (a) Ba+, t = 5 s; (b) Ba+, t = 30 s; (c) Ba+, t = 200 s; (d) O+, t = 5 s; (e) O+, t = 30 s; (f) O+, t = 200 s. 无中性风场时, 300 km高度释放10 kg钡后钡离子和氧离子的离子数密度分布(x-y平面) (a) Ba+, t = 5 s; (b) Ba+, t = 30 s; (c) Ba+, t = 200 s; (d) O+, t = 5 s; (e) O+, t = 30 s; (f) O+, t = 200 s
Density distribution of Ba+ and O+ (in x-z plane) after 10 kg barium released at 300 km while no neutral wind is considered: (a) O+, t = 5 s; (b) O+, t = 30 s; (c) O+, t = 200 s; (d) Ba+, t = 5 s; (e) Ba+, t = 30 s; (f) Ba+, t = 200 s.无中性风场时, 300 km高度释放10 kg钡后钡离子和氧离子的粒子数密度分布(x-z平面) (a) O+, t = 5 s; (b) O+, t = 30 s; (c) O+, t = 200 s; (d) Ba+, t = 5 s; (e) Ba+, t = 30 s; (f) Ba+, t = 200 s
Fig. 3. Density distribution of Ba+ and O+ (in x-z plane) after 10 kg barium released at 300 km while no neutral wind is considered: (a) O+, t = 5 s; (b) O+, t = 30 s; (c) O+, t = 200 s; (d) Ba+, t = 5 s; (e) Ba+, t = 30 s; (f) Ba+, t = 200 s. 无中性风场时, 300 km高度释放10 kg钡后钡离子和氧离子的粒子数密度分布(x-z平面) (a) O+, t = 5 s; (b) O+, t = 30 s; (c) O+, t = 200 s; (d) Ba+, t = 5 s; (e) Ba+, t = 30 s; (f) Ba+, t = 200 s
Density distribution of Ba+ and O+ (in x-z plane) after 10 kg barium released at 300 km with a neutral wind of 1 km/s in the x direction: (a) O+, t = 5 s;(b) O+, t = 30 s; (c) O+, t = 200 s; (d) Ba+, t = 5 s; (e) Ba+, t = 30 s; (f) Ba+, t = 200 s.存在x方向大小为1 km/s的中性风时, 300 km高度释放10 kg钡后钡离子和氧离子的粒子数密度分布(x-z平面) (a) O+, t = 5 s; (b) O+, t = 30 s; (c) O+, t = 200 s; (d) Ba+, t = 5 s; (e) Ba+, t = 30 s; (f) Ba+, t = 200 s
Fig. 4. Density distribution of Ba+ and O+ (in x-z plane) after 10 kg barium released at 300 km with a neutral wind of 1 km/s in the x direction: (a) O+, t = 5 s;(b) O+, t = 30 s; (c) O+, t = 200 s; (d) Ba+, t = 5 s; (e) Ba+, t = 30 s; (f) Ba+, t = 200 s. 存在x方向大小为1 km/s的中性风时, 300 km高度释放10 kg钡后钡离子和氧离子的粒子数密度分布(x-z平面) (a) O+, t = 5 s; (b) O+, t = 30 s; (c) O+, t = 200 s; (d) Ba+, t = 5 s; (e) Ba+, t = 30 s; (f) Ba+, t = 200 s
Three-dimensional density distribution of barium neutral cloud (green sphere) and ion cloud (blue sphere) at 30 s after release钡中性云团(绿色)和离子云团(蓝色)在释放后30 s时的三维分布示意图
Fig. 5. Three-dimensional density distribution of barium neutral cloud (green sphere) and ion cloud (blue sphere) at 30 s after release钡中性云团(绿色)和离子云团(蓝色)在释放后30 s时的三维分布示意图
Density distribution of Cs+ and O+ (in x-z plane) after 10 kg cesium released at 300 km with a neutral wind of 1 km/s in the x direction: (a) O+, t = 5 s; (b) O+, t = 30 s; (c) O+, t = 200 s; (d) Cs+, t = 5 s; (e) Cs+, t = 30 s; (f) Cs+, t = 200 s.存在x方向大小为1 km/s的中性风时, 300 km高度释放10 kg铯的粒子数密度分布(x-z平面) (a) O+, t = 5 s; (b) O+, t = 30 s; (c) O+, t = 200 s; (d) Cs+, t = 5 s; (e) Cs+, t = 30 s; (f) Cs+, t = 200 s
Fig. 6. Density distribution of Cs+ and O+ (in x-z plane) after 10 kg cesium released at 300 km with a neutral wind of 1 km/s in the x direction: (a) O+, t = 5 s; (b) O+, t = 30 s; (c) O+, t = 200 s; (d) Cs+, t = 5 s; (e) Cs+, t = 30 s; (f) Cs+, t = 200 s. 存在x方向大小为1 km/s的中性风时, 300 km高度释放10 kg铯的粒子数密度分布(x-z平面) (a) O+, t = 5 s; (b) O+, t = 30 s; (c) O+, t = 200 s; (d) Cs+, t = 5 s; (e) Cs+, t = 30 s; (f) Cs+, t = 200 s
The maximum density of artificial plasma cloud (a) and the maximum disturbance of background oxygen ion (a) versus time.生成的等离子体云团的密度最大值(a)和背景氧离子的最大扰动值(b)随时间的变化
Fig. 7. The maximum density of artificial plasma cloud (a) and the maximum disturbance of background oxygen ion (a) versus time.生成的等离子体云团的密度最大值(a)和背景氧离子的最大扰动值(b)随时间的变化
参数数值(来源)
模拟时间201709151800LT
释放地点(22°N, 109°E)
释放高度/km300
磁场强度/nT38860
温度/K860
地磁倾角32.4°
地磁偏角–1.9°
氧离子数密度/cm–39 × 105
氧原子数密度/cm–33.06 × 109
光电离率0.0357(Ba)[18]/0.05(Cs)[24]
阻尼系数/s–10.0149(Ba)/0.0208(Cs)
扩散系数/1010$ \rm cm^2\cdot s^{-1} $2.94(Ba)/2.17(Cs)
原子极化率/10–24 cm339.7(Ba)/59.6(Cs)
Table 1.

The main simulation parameters.

主要仿真参数表

Xiao-Li Zhu, Yao-Gai Hu, Zheng-Yu Zhao, Yuan-Nong Zhang. Comparison between ionospheric disturbances caused by barium and cesium[J]. Acta Physica Sinica, 2020, 69(2): 029401-1
Download Citation