• Advanced Photonics
  • Vol. 5, Issue 6, 060503 (2023)
Hancong Li1, Qiming Peng2, Xiulai Xu1、*, and Jianpu Wang2、3、*
Author Affiliations
  • 1Peking University, School of Physics, Frontiers Science Center for Nano-Optoelectronics, State Key Laboratory for Mesoscopic Physics, Beijing, China
  • 2Nanjing Tech University, Institute of Advanced Materials, School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Nanjing, China
  • 3Changzhou University, Changzhou, China
  • show less
    DOI: 10.1117/1.AP.5.6.060503 Cite this Article Set citation alerts
    Hancong Li, Qiming Peng, Xiulai Xu, Jianpu Wang. Quantum dots for optoelectronics[J]. Advanced Photonics, 2023, 5(6): 060503 Copy Citation Text show less
    References

    [1] A. I. Ekimov et al. Exciton absorption by copper chloride crystals in a glassy matrix. Fiz. Khim. Stekla, 6, 511(1980).

    [2] A. L. Efros. Interband light absorption in semiconductor spheres. Sov. Phys. Semicond., 16, 772(1982).

    [3] L. E. Brus. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys., 79, 5566(1983).

    [4] M. G. Bawendi et al. X‐ray structural characterization of larger CdSe semiconductor clusters. J. Chem. Phys., 91, 7282(1989).

    [5] X. Peng et al. Shape control of CdSe nanocrystals. Nature, 404, 59(2000).

    [6] A. L. Efros, L. E. Brus. Nanocrystal quantum dots: from discovery to modern development. ACS Nano, 15, 6192(2021).

    [7] C. B. Murray et al. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc., 115, 8706(1993).

    [8] V. K. LaMer et al. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc., 72, 4847(1950).

    [9] I. N. Stranski, L. Krastanow. Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander. Monatsheft. Chem., 71, 351(1937).

    [10] E. Jang, H. Jang. Review: quantum dot light-emitting diodes. Chem. Rev., 123, 4663(2023).

    [11] V. Colvin et al. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature, 370, 354(1994).

    [12] S. Coe-Sullivan et al. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature, 420, 800(2002).

    [13] J. S. Steckel et al. Blue luminescence from (CdS)ZnS core–shell nanocrystals. Angew. Chem. Int. Ed., 43, 2154(2004).

    [14] S. Jun et al. Interfused semiconductor nanocrystals: brilliant blue photoluminescence and electroluminescence. Chem. Commun., 36, 4616(2005).

    [15] P. O. Anikeeva et al. Electroluminescence from a mixed red–green–blue colloidal quantum dot monolayer. Nano Lett., 7, 2196(2007).

    [16] J. Song et al. Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer. Adv. Funct. Mater., 29, 1808377(2019).

    [17] Y. Fang et al. Highly efficient red quantum dot light-emitting diodes by balancing charge injection and transport. ACS Appl. Mater. Interfaces, 14, 21263(2022).

    [18] Y. Deng et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photonics, 16, 505(2022).

    [19] J. Lim et al. InP@ZnSeS, Core@Composition gradient shell quantum dots with enhanced stability. Chem. Mater., 23, 4459(2011).

    [20] T. Kim et al. Efficient and stable blue quantum dot light-emitting diode. Nature, 586, 385(2020).

    [21] M. Gao et al. Bulk-like ZnSe quantum dots enabling efficient ultranarrow blue light-emitting diodes. Nano Lett., 21, 7252(2021).

    [22] Y. Arakawa, H. Sakaki. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett., 40, 939(1982).

    [23] M. Asada, Y. Miyamoto, Y. Suematsu. Gain and the threshold of three-dimensional quantum-box lasers. IEEE J. Quantum Electron., 22, 1915(1986).

    [24] A. Ekimov. Growth and optical properties of semiconductor nanocrystals in a glass matrix. J. Lumin., 70, 1(1996).

    [25] V. I. Klimov et al. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science, 287, 1011(2000).

    [26] V. I. Klimov et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science, 290, 314(2000).

    [27] W. K. Bae et al. Controlled alloying of the core–shell interface in CdSe/CdS quantum dots for suppression of auger recombination. ACS Nano, 7, 3411(2013).

    [28] W. K. Bae et al. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun., 4, 2661(2013).

    [29] F. Fan et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature, 544, 75(2017).

    [30] J. Roh et al. Optically pumped colloidal-quantum-dot lasing in LED-like devices with an integrated optical cavity. Nat. Commun., 11, 271(2020).

    [31] N. Ahn et al. Electrically driven amplified spontaneous emission from colloidal quantum dots. Nature, 617, 79(2023).

    [32] A. Zaban et al. Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir, 14, 3153(1998). https://doi.org/10.1021/la9713863

    [33] S. A. McDonald et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater., 4, 138(2005).

    [34] A. G. Pattantyus-Abraham et al. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano, 4, 3374(2010).

    [35] G. Tikhomirov et al. DNA-based programming of quantum dot valency, self-assembly and luminescence. Nat. Nanotechnol., 6, 485(2011).

    [36] I. Gur et al. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science, 310, 462(2005).

    [37] O. Voznyy et al. A charge-orbital balance picture of doping in colloidal quantum dot solids. ACS Nano, 6, 8448(2012).

    [38]

    [39] D. J. Eaglesham, M. Cerullo. Dislocation-free Stranski-Krastanow growth of Ge on Si(100). Phys. Rev. Lett., 64, 1943(1990).

    [40] S. Guha, A. Madhukar, K. C. Rajkumar. Onset of incoherency and defect introduction in the initial stages of molecular beam epitaxical growth of highly strained InxGa1xAs on GaAs(100). Appl. Phys. Lett., 57, 2110(1990). https://doi.org/10.1063/1.103914

    [41] H. Drexleret?al.. Spectroscopy of quantum levels in charge-tunable InGaAs quantum dots. Phys. Rev. Lett., 73, 2252(1994).

    [42] J.-Y. Marzinet?al.. Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs. Phys. Rev. Lett., 73, 716(1994).

    [43] Y.-M. He et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol., 8, 213(2013).

    [44] N. Somaschi et al. Near optimal single photon sources in the solid state. Nat. Photonics, 10, 340(2016).

    [45] F. Liu et al. High Purcell factor generation of indistinguishable on-chip single photons. Nat. Nanotechnol., 13, 835(2018).

    [46] H. Wang et al. Towards optimal single-photon sources from polarized microcavities. Nat. Photonics, 13, 770(2019).

    [47] N. Tomm et al. A bright and fast source of coherent single photons. Nat. Nanotechnol., 16, 399(2021).

    [48] M. A. M. Versteegh et al. Observation of strongly entangled photon pairs from a nanowire quantum dot. Nat. Commun., 5, 5298(2014).

    [49] T. Heindel et al. A bright triggered twin-photon source in the solid state. Nat. Commun., 8, 14870(2017).

    [50] H. Wang et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys. Rev. Lett., 122, 113602(2019).

    [51] J. Liu et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol., 14, 586(2019).

    [52] L. Ginés et al. High extraction efficiency source of photon pairs based on a quantum dot embedded in a broadband micropillar cavity. Phys. Rev. Lett., 129, 033601(2022).

    [53] R. M. Stevenson et al. A semiconductor source of triggered entangled photon pairs. Nature, 439, 179(2006).

    [54] P. Michler et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature, 406, 968(2000).

    [55] N. Kirstaedter et al. Low threshold, large To injection laser emission from (InGa)As quantum dots. Electron. Lett., 30, 1416(1994). https://doi.org/10.1049/el:19940939

    [56] G. T. Liu et al. Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well. Electron. Lett., 35, 1163(1999).

    [57] D. G. Deppe et al. Quantum dot laser diode with low threshold and low internal loss. Electron. Lett., 45, 54(2009).

    [58] M. Sugawara, M. Usami. Quantum dot devices: handling the heat. Nat. Photonics, 3, 30(2009).

    [59] W. Zhang et al. Low-threshold topological nanolasers based on the second-order corner state. Light Sci. Appl., 9, 109(2020).

    [60] H. Zhong et al. Ultra-low threshold continuous-wave quantum dot mini-BIC lasers. Light Sci. Appl., 12, 100(2023).

    [61] K. W. Berryman, S. A. Lyon, M. Segev. Mid-infrared photoconductivity in InAs quantum dots. Appl. Phys. Lett., 70, 1861(1997).

    [62] D. Pan, E. Towe, S. Kennerly. Normal-incidence intersubband (In, Ga)As/GaAs quantum dot infrared photodetectors. Appl. Phys. Lett., 73, 1937(1998).

    [63] A. V. Barve et al. Review of current progress in quantum dot infrared photodetectors. Laser Photonics Rev., 4, 738(2010).

    [64] Z. Zhou et al. Prospects and applications of on-chip lasers. eLight, 3, 1(2023).

    [65] T. Egawa et al. AlGaAs/GaAs laser diodes with GaAs islands active regions on Si grown by droplet epitaxy. Jpn. J. Appl. Phys., 37, 1552(1998).

    [66] K. K. Linder et al. Self-organized In0.4Ga0.6As quantum-dot lasers grown on Si substrates. Appl. Phys. Lett., 74, 1355(1999). https://doi.org/10.1063/1.123548

    [67] Z. I. Kazi et al. Growth of InxGa1xAs quantum dots by metal–organic chemical vapor deposition on Si substrates and in GaAs-based lasers. J. Appl. Phys., 90, 5463(2001). https://doi.org/10.1063/1.1375010

    [68] A. Y. Liu et al. Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon. IEEE J. Select. Top. Quantum. Electron., 21, 1900708(2015).

    [69] S. Chen et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photonics, 10, 307(2016).

    [70] D. Liang, J. E. Bowers. Recent progress in lasers on silicon. Nat. Photonics, 4, 511(2010).

    [71] H. Liu et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat. Photonics, 5, 416(2011).

    Hancong Li, Qiming Peng, Xiulai Xu, Jianpu Wang. Quantum dots for optoelectronics[J]. Advanced Photonics, 2023, 5(6): 060503
    Download Citation