• Journal of Atmospheric and Environmental Optics
  • Vol. 15, Issue 6, 429 (2020)
Dongbin WANG*, Mo XUE, Xiaotong CHEN, and Jingkun JIANG
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2020.06.003 Cite this Article
    WANG Dongbin, XUE Mo, CHEN Xiaotong, JIANG Jingkun. Development and Evaluation of a New Soft X-Ray Aerosol Charger[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(6): 429 Copy Citation Text show less
    References

    [1] Poschl U. Atmospheric aerosols: composition, transformation, climate and health effects[J]. Angewandte Chemie. International Edition. 2005, 44 (46): 7520-7540.

    [2] Kulkarni P, Baron P A, Willeke K. Aerosol Measurement: Principles, Techniques, and Applications[M]. 3rd. John Wiley & Sons, 1996: 883.

    [3] Flagan R C. History of electrical aerosol measurements[J]. Aerosol Science and Technology, 1998, 28(4): 301-380.

    [4] Jiang J, Chen M, Kuang C, et al. Electrical mobility spectrometer using a diethylene glycol condensation particle counter for measurement of aerosol size distributions down to 1 nm[J]. Aerosol Science and Technology, 2011, 45(4): 510-521.

    [5] Wang S C, Flagan R C. Scanning electrical mobility spectrometer[J]. Aerosol Science and Technology, 1990, 13(2): 230-240.

    [6] Wiedensohler A, Birmili W, Nowak A, et al. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions[J]. Atmospheric Measurement Techniques, 2012, 5(3): 657-685.

    [7] Liu J, Jiang J, Zhang Q, et al. A spectrometer for measuring particle size distributions in the range of 3 nm to 10 μ m[J]. Frontiers of Environmental Science & Engineering, 2016, 10(1): 63-72.

    [8] Alonso M, Alguacil F J. Particle size distribution modification during and after electrical charging: Comparison between a corona ionizer and a radioactive neutralizer[J]. Aerosol and Air Quality Research, 2008, 8(4): 366-380.

    [9] Hernandez-Sierra A, Alguacil F J, Alonso M. Unipolar charging of nanometer aerosol particles in a corona ionizer[J]. Journal of Aerosol Science, 2003, 34(6): 733-745.

    [10] Intra P, Tippayawong N. An overview of unipolar charger developments for nanoparticle charging[J]. Aerosol and Air Quality Research, 2011, 11(2): 187-209.

    [11] Laschober C, Kaufman S L, Reischl G, et al. Comparison between an unipolar corona charger and a polonium-based bipolar neutralizer for the analysis of nanosized particles and biopolymers[J]. Journal of Nanoscience and Nanotechnology, 2006, 6(5): 1474-1481.

    [12] Chen X, Jiang J. Retrieving the ion mobility ratio and aerosol charge fractions for a neutralizer in real-world applications[J]. Aerosol Science and Technology, 2018, 52(10): 1145-1155.

    [13] Chen X, Mcmurry P H, Jiang J. Stationary characteristics in bipolar diffusion charging of aerosols: Improving the performance of electrical mobility size spectrometers[J]. Aerosol Science and Technology, 2018, 52(8): 809-813.

    [14] Tigges L, Jain A, Schmid H J. On the bipolar charge distribution used for mobility particle sizing: Theoretical considerations[J]. Journal of Aerosol Science, 2015, 88: 119-134.

    [15] Adachi M, Kousaka Y, Okuyama K. Unipolar and bipolar diffusion charging of ultrafine aerosol-particles[J]. Journal of Aerosol Science, 1985, 16(2): 109-123.

    [16] Chen X T. Study of Aerosol Charging and Its Applications in Submicron Aerosol Measurement[D]. Beijing: Doctoral Dissertation of Tsinghua University, 2019.

    [17] Jiang J, Kim C, Wang X, et al. Aerosol charge fractions downstream of six bipolar chargers: Effects of ion source, source activity, and flowrate[J]. Aerosol Science and Technology, 2014, 48(12): 1207-1216.

    [18] Chen X, Jiang J, Chen D R. A soft X-ray unipolar charger for ultrafine particles[J]. Journal of Aerosol Science, 2019, 133: 66-71.

    [19] Han B, Shimada M, Okuyama K, et al. Classification of monodisperse aerosol particles using an adjustable soft X-ray charger[J]. Powder Technology, 2003, 135: 336-344.

    [20] Lee H M, Soo Kim C, Shimada M, et al. Bipolar diffusion charging for aerosol nanoparticle measurement using a soft X-ray charger[J]. Journal of Aerosol Science, 2005, 36(7): 813-829.

    [21] Shimada M, Han B W, Okuyama K, et al. Bipolar charging of aerosol nanoparticles by a soft X-ray photoionizer[J]. Journal of Chemical Engineering of Japan, 2002, 35(8): 786-793.

    [22] Tigges L, Wiedensohler A, Weinhold K, et al. Bipolar charge distribution of a soft X-ray diffusion charger[J]. Journal of Aerosol Science, 2015, 90: 77-86.

    [23] Fuchs N A. On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere[J]. Geofisica Pura E Applicata, 1963, 56(1): 185-193.

    [24] Hoppel W A, Frick G M. The nonequilibrium character of the aerosol charge distributions produced by neutralizes[J]. Aerosol Science and Technology, 2007, 12(3): 471-496.

    [25] Wiedensohler A, Lutkemeier E, Feldpausch M, et al. Investigation of the bipolar charge-distribution at various gas conditions[J]. Journal of Aerosol Science, 1986, 17(3): 413-416.

    [26] De La Verpilliere J L, Swanson J J, Boies A M. Unsteady bipolar diffusion charging in aerosol neutralisers: A non-dimensional approach to predict charge distribution equilibrium behaviour[J]. Journal of Aerosol Science, 2015, 86: 55-68.

    [27] Wiedensohler A. An approximation of the bipolar charge-distribution for particles in the sub-micron size range[J]. Journal of Aerosol Science, 1988, 19(3): 387-389.

    [28] Xue M. Modification of Condensation Particle Counters for the Enhanced Detection of 1-3 nm Particles[D]. Beijing: Master ′ s Thesis of Tsinghua University, 2019.

    [29] Chen D R, Pui D Y H. A high efficiency, high throughput unipolar aerosol charger for nanoparticles[J]. Journal of Nanoparticle Research, 1999, (1): 115-126.

    [30] Cai R, Yang D, Fu Y, et al. Aerosol surface area concentration: a governing factor in new particle formation in Beijing[J]. Atmospheric Chemistry and Physics, 2017, 17(20): 12327-12340.

    [31] Xue Mo, Fu Yueyun, Cai Runlong, et al. Penetration of 1 ~ 3 nm particles through a diethylene glycol scanning mobility particle spectrometer (DEG-SMPS)[J]. Acta Scientiae Circumstantiae, 1999, 39(9): 2896-2902 (in Chinese).

    [32] Kangasluoma J, Attoui M, Junninen H, et al. Sizing of neutral sub 3 nm tungsten oxide clusters using airmodus particle size magnifier[J]. Journal of Aerosol Science, 2015, 87: 53-62.

    [33] Peineke C, Attoui M, Robles R, et al. Production of equal sized atomic clusters by a hot wire[J]. Journal of Aerosol Science, 2009, 40(5): 423-430.

    [34] Peineke C, Attoui M B, Schmidt-Ott A. Using a glowing wire generator for production of charged, uniformly sized nanoparticles at high concentrations[J]. Journal of Aerosol Science, 2006, 37(12): 1651-1661.

    [35] De La Mora J F, Kozlowski J. Hand-held differential mobility analyzers of high resolution for 1 ~ 30 nm particles: Design and fabrication considerations[J]. Journal of Aerosol Science, 2013, 57: 45-53.

    [36] Ude S, De La Mora J F. Molecular monodisperse mobility and mass standards from electrosprays of tetra-alkyl ammonium halides[J]. Journal of Aerosol Science, 2005, 36(10): 1224-1237.

    [37] Gormley P G, Kennedy M. Diffusion from a stream flowing through a cylindrical tube[J]. Proceedings of the Royal Irish Academy, Section A (Mathematical, Astronomical and Physical Science), 1949, 52(12): 163-169.

    [38] Yoon Y H, Bong C, Kim D S. Evaluation of the performance of a soft X-ray charger for the bipolar charging of nanoparticles[J]. Particuology, 2015, 18: 165-169.

    [39] Reischl G P, Makela J M, Karch R, et al. Bipolar charging of ultrafine particles in the size range below 10 nm[J]. Journal of Aerosol Science, 1996, 27(6): 931-949.

    WANG Dongbin, XUE Mo, CHEN Xiaotong, JIANG Jingkun. Development and Evaluation of a New Soft X-Ray Aerosol Charger[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(6): 429
    Download Citation