[1] Sun X, Lian Z, Xiao J. Srinet: Learning strictly rotation-invariant representations for point cloud classification and segmentation[C]//Proceedings of the 27th ACM international conference on multimedia. 2019: 980-988.
[2] Minaee S, Boykov Y, Porikli F, et al. Image segmentation using deep learning: A survey[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 44(7): 3523-3542.
[3] Wu B, Wan A, Yue X, et al. Squeezeseg: Convolutional neural nets with recurrent crf for real-time road-object segmentation from 3d lidar point cloud[C]//2018 IEEE international conference on robotics and automation (ICRA). IEEE, 2018: 1887-1893.
[4] Zhang Y, Zhou Z, David P, et al. Polarnet: An improved grid representation for online lidar point clouds semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 9601-9610.
[5] Xiao A, Yang X, Lu S, et al. FPS-Net: A convolutional fusion network for large-scale LiDAR point cloud segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 176: 237-249.
[6] Alnaggar Y A, Afifi M, Amer K, et al. Multi projection fusion for real-time semantic segmentation of 3d lidar point clouds[C]//Proceedings of the IEEE/CVF winter conference on applications of computer vision. 2021: 1800-1809.
[7] Tchapmi L, Choy C, Armeni I, et al. Segcloud: Semantic segmentation of 3d point clouds[C]//2017 international conference on 3D vision (3DV). IEEE, 2017: 537-547.
[8] Meng H Y, Gao L, Lai Y K, et al. Vv-net: Voxel vae net with group convolutions for point cloud segmentation[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2019: 8500-8508.
[9] Zhou H, Zhu X, Song X, et al. Cylinder3d: An effective 3d framework for driving-scene lidar semantic segmentation[J]. arXiv preprint arXiv: 2008.01550, 2020.
[10] Feng G, Li W, Zhao X, et al. LessNet: Lightweight and efficient semantic segmentation for large-scale point clouds[J]. IET Cyber-Systems and Robotics, 2022, 4(2): 107-115.
[11] Qi C R, Su H, Mo K, et al. Pointnet: Deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 652-660.
[12] Qi C R, Yi L, Su H, et al. Pointnet++: Deep hierarchical feature learning on point sets in a metric space[J]. Advances in neural information processing systems, 2017, 30.
[13] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.
[14] Armeni I, Sener O, Zamir A R, et al. 3d semantic parsing of large-scale indoor spaces[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.2016: 1534-1543.