• Chinese Optics Letters
  • Vol. 22, Issue 4, 041301 (2024)
Minghui Li1、2, Renhong Gao1、2, Chuntao Li3、4, Jianglin Guan3、4, Haisu Zhang3, Jintian Lin1、2、*, Guanghui Zhao1、5, Qian Qiao1、5, Min Wang2, Lingling Qiao1, Li Deng2, and Ya Cheng1、2、3、6、7、**
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3XXL—The Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
  • 4State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
  • 5School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
  • 6Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
  • 7Hefei National Laboratory, Hefei 230088, China
  • show less
    DOI: 10.3788/COL202422.041301 Cite this Article Set citation alerts
    Minghui Li, Renhong Gao, Chuntao Li, Jianglin Guan, Haisu Zhang, Jintian Lin, Guanghui Zhao, Qian Qiao, Min Wang, Lingling Qiao, Li Deng, Ya Cheng. Erbium-ytterbium co-doped lithium niobate single-mode microdisk laser with an ultralow threshold of 1 µW[J]. Chinese Optics Letters, 2024, 22(4): 041301 Copy Citation Text show less
    References

    [1] C. Wang, M. Zhang, X. Chen et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101(2018).

    [2] M. He, M. Xu, Y. Ren et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics, 13, 359(2019).

    [3] R. Wu, L. Gao, Y. Liang et al. High-production-rate fabrication of low-loss lithium niobate electro-optic modulators using photolithography assisted chemo-mechanical etching (PLACE). Micromachines, 13, 237(2022).

    [4] A. Rao, K. Abdelsalam, T. Aardema et al. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4600 %W−1cm−2. Opt. Express, 27, 25920(2019).

    [5] N. Amiune, D. N. Puzyrev, V. V. Pankratov et al. Optical-parametric-oscillation-based χ(2) frequency comb in a lithium niobate microresonator. Opt. Express, 29, 41378(2021).

    [6] Y. Zhang, H. Li, T. Ding et al. Scalable, fiber-compatible lithium-niobate-on-insulator micro-waveguides for efficient nonlinear photonics. Optica, 10, 688(2022).

    [7] J. Lin, N. Yao, Z. Hao et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys. Rev. Lett., 122, 173903(2019).

    [8] Y. F. Niu, C. Lin, X. Y. Liu et al. Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains. Appl. Phys. Lett., 116, 101104(2020).

    [9] J. Hou, J. Lin, J. Zhu et al. Self-induced transparency in a perfectly absorbing chiral second-harmonic generator. PhotoniX, 3, 22(2022).

    [10] L. Wang, X. Zhang, F. Chen. Efficient second harmonic generation in a reverse-polarization dual-layer crystalline thin film nanophotonic waveguide. Laser Photonics Rev., 15, 2100409(2021).

    [11] Y.-H. Yang, X.-B. Xu, J.-Q. Wang et al. Nonlinear optical radiation of a lithium niobate microcavity. Phys. Rev. Appl., 19, 034087(2023).

    [12] J. Zhao, C. Ma, M. Ruesing et al. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys. Rev. Lett., 124, 163603(2020).

    [13] G.-T. Xue, Y.-F. Niu, X. Y. Liu et al. Ultrabright multiplexed energy-time-entangled photon generation from lithium niobate on insulator chip. Phys. Rev. Appl., 15, 064059(2021).

    [14] B.-Y. Xu, L.-K. Chen, J.-T. Lin et al. Spectrally multiplexed and bright entangled photon pairs in a lithium niobate microresonator. Sci. China Phys. Mech. Astron., 65, 294262(2022).

    [15] H.-Y. Liu, M. Shang, X. Liu et al. Deterministic N-photon state generation using lithium niobate on insulator device. Adv. Photon. Nexus, 2, 016003(2023).

    [16] Y. He, Q.-F. Yang, J. W. Ling et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 6, 1138(2019).

    [17] Z. Gong, X. Liu, Y. Xu et al. Near-octave lithium niobate soliton microcomb. Optica, 7, 1275(2020).

    [18] R. Zhuang, K. Ni, G. Wu et al. Electro-optic frequency combs: theory, characteristics, and applications. Laser Photonics Rev., 17, 2200353(2023).

    [19] C. Wang, M. Zhang, M. Yu et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun., 10, 978(2019).

    [20] C. Yang, S. Yang, F. Du et al. 1550-nm band soliton microcombs in ytterbium-doped lithium-niobate microrings. Laser Photonics Rev., 17, 2200510(2023).

    [21] S. Wan, P.-Y. Wang, R. Ma et al. Photorefraction-assisted self-emergence of dissipative Kerr solitons(2023).

    [22] B. Fu, R. Gao, N. Yao et al. Generation of Kerr soliton microcomb in a normally dispersed lithium niobate microdisk resonator by mode trimming(2023).

    [23] M. Yu, D. Barton, R. Cheng et al. Integrated femtosecond pulse generator on thin-film lithium niobate. Nature, 612, 252(2022).

    [24] J. Lin, F. Bo, Y. Cheng et al. Advances in on-chip photonic devices based on lithium niobate on insulator. Photonics Res., 8, 1910(2020).

    [25] Y. Kong, F. Bo, W. Wang et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices. Adv. Mater., 32, 1806452(2020).

    [26] Y. Jia, L. Wang, F. Chen. Ion-cut lithium niobate on insulator technology: recent advances and perspectives. Appl. Phys. Rev., 8, 011307(2021).

    [27] Y. Zheng, X. Chen. Nonlinear wave mixing in lithium niobate thin film. Adv. Phys. X, 6, 1889402(2021).

    [28] J. X. Zhou, R. H. Gao, J. T. Lin et al. Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching. Chin. Phys. Lett., 37, 084201(2020).

    [29] R. Zhang, C. Yang, Z. Hao et al. Integrated lithium niobate single-mode lasers by the Vernier effect. Sci. China Phys. Mech. Astron., 64, 294216(2021).

    [30] J. Lin, S. Farajollahi, Z. Fang et al. Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser. Adv. Photonics, 4, 036001(2022).

    [31] Z. Xiao, K. Wu, M. Cai et al. Single-frequency integrated laser on erbium-doped lithium niobate on insulator. Opt. Lett., 46, 4128(2021).

    [32] X. Liu, X. Yan, Y. Liu et al. Tunable single-mode laser on thin film lithium niobate. Opt. Lett., 46, 5505(2021).

    [33] S. Yu, Z. Fang, Z. Wang et al. On-chip single-mode thin-film lithium niobate Fabry–Perot resonator laser based on Sagnac loop reflectors. Opt. Lett., 48, 2660(2023).

    [34] J. Guan, C. Li, R. Gao et al. Monolithically integrated narrow-bandwidth disk laser on thin-film lithium niobate. Opt. Laser Technol., 168, 109908(2024).

    [35] J. Zhou, Y. Liang, Z. Liu et al. On-chip integrated waveguide amplifiers on erbium-doped thin-film lithium niobate on insulator. Laser Photonics Rev., 15, 2100030(2021).

    [36] Z. Chen, Q. Xu, K. Zhang et al. Efficient erbium-doped thin-film lithium niobate waveguide amplifiers. Opt. Lett., 46, 1161(2021).

    [37] Y. Liang, J. Zhou, Z. Liu et al. A high-gain cladded waveguide amplifier on erbium doped thin-film lithium niobate fabricated using photolithography assisted chemo-mechanical etching. Nanophotonics, 11, 1033(2022).

    [38] S. Wang, L. Yang, R. Cheng et al. Incorporation of erbium ions into thin-film lithium niobate integrated photonics. Appl. Phys. Lett., 116, 151103(2020).

    [39] M. Wang, Z. Fang, J. Lin et al. Integrated active lithium niobate photonic devices. Jpn. J. Appl. Phys., 62, SC0801(2023).

    [40] Y. Jia, J. Wu, X. Sun et al. Integrated photonics based on rare-earth ion-doped thin-film lithium niobate. Laser Photonics Rev., 16, 2200059(2022).

    [41] Y. Chen. Photonic integration on rare earth ion-doped thin-film lithium niobate. Sci. China Phys. Mech. Astron., 65, 294231(2022).

    [42] Q. Luo, F. Bo, Y. Kong et al. Advances in lithium niobate thin-film lasers and amplifiers: a review. Adv. Photonics, 5, 034002(2023).

    [43] E. Cantelar, J. A. Muñoz, J. A. Sanz-García et al. Yb3+ to Er3+ energy transfer in LiNbO3. J. Phys., 10, 8893(1998).

    [44] E. Cantelar, F. Cussó. Competitive up-conversion mechanisms in Er3+/Yb3+ co-doped LiNbO3. J. Lumin., 102-103, 525(2003).

    [45] Q. Luo, C. Yang, Z. Hao et al. On-chip erbium–ytterbium-co-doped lithium niobate microdisk laser with an ultralow threshold. Opt. Lett., 48, 3447(2023).

    [46] Z. Zhang, S. Li, R. Gao et al. Erbium-ytterbium codoped thin-film lithium niobate integrated waveguide amplifier with a 27 dB internal net gain. Opt. Lett., 48, 4344(2023).

    [47] R. Gao, B. Fu, N. Yao et al. Electro-optically tunable low phase-noise microwave synthesizer in an active lithium niobate microdisk. Laser Photonics Rev., 17, 2300903(2023).

    [48] R. Wu, J. Zhang, N. Yao et al. Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett., 43, 4116(2018).

    [49] B. Fu, R. Gao, J. Lin et al. Modes trimming and clustering in a weakly perturbed high-Q whispering gallery microresonator. Laser Photonics Rev., 17, 2300116(2023).

    [50] R. Gao, N. Yao, J. Guan et al. Lithium niobate microring with ultra-high Q factor above 108. Chin. Opt. Lett., 20, 011902(2022).

    [51] J. Ma, F. Xie, W. Chen et al. Nonlinear lithium niobate metasurfaces for second harmonic generation. Laser Photonics Rev., 15, 2000521(2021).

    [52] Z. He, H. Guan, X. Liang et al. Broadband, polarization-sensitive, and self-powered high-performance photodetection of hetero-integrated MoS2 on lithium niobate. Research, 6, 0119(2023).

    Minghui Li, Renhong Gao, Chuntao Li, Jianglin Guan, Haisu Zhang, Jintian Lin, Guanghui Zhao, Qian Qiao, Min Wang, Lingling Qiao, Li Deng, Ya Cheng. Erbium-ytterbium co-doped lithium niobate single-mode microdisk laser with an ultralow threshold of 1 µW[J]. Chinese Optics Letters, 2024, 22(4): 041301
    Download Citation