• Frontiers of Optoelectronics
  • Vol. 7, Issue 3, 376 (2014)
Charles CAER, Xavier LE ROUX, Samuel SERNA, Weiwei ZHANG, Laurent VIVIEN, and Eric CASSAN*
Author Affiliations
  • Institut d'Electronique Fondamentale, University Paris-Sud, CNRS UMR 8622, Bat. 220, 91405 Orsay Cedex, France
  • show less
    DOI: 10.1007/s12200-013-0384-0 Cite this Article
    Charles CAER, Xavier LE ROUX, Samuel SERNA, Weiwei ZHANG, Laurent VIVIEN, Eric CASSAN. Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics[J]. Frontiers of Optoelectronics, 2014, 7(3): 376 Copy Citation Text show less
    References

    [1] Baba T. Slow light in photonic crystals. Nature Photonics, 2008, 2(8): 465–473

    [2] Nozaki K, Shinya A, Matsuo S, Suzaki Y, Segawa T, Sato T, Kawaguchi Y, Takahashi R, Notomi M. Ultralow-power all-optical RAM based on nanocavities. Nature Photonics, 2012, 6(4): 248–252

    [3] Monat C, Corcoran B, Pudo D, Ebnali-Heidar M, Grillet C, PelusiM D, Moss D J, Eggleton B J, White T P, O’Faolain L, Kauss T F. Slow light enhanced nonlinear optics in silicon photonic crystal waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 344–356

    [4] Frandsen L H, Lavrinenko AV, Fage-Pedersen J, Borel P I. Photonic crystal waveguides with semi-slow light and tailored dispersion properties. Optics Express, 2006, 14(20): 9444–9450

    [5] Kubo S, Mori D, Baba T. Low-group-velocity and low-dispersion slow light in photonic crystal waveguides. Optics Letters, 2007, 32(20): 2981–2983

    [6] Hao R, Cassan E, Kurt H, Le Roux X, Marris-Morini D, Vivien L, Wu H M, Zhou Z P, Zhang X L. Novel slow light waveguide with controllable delay-bandwidth product and utra-low dispersion. Optics Express, 2010, 18(6): 5942–5950

    [7] Hao R, Cassan E, Le Roux X, Gao D S, Do Khanh V, Vivien L, Marris-Morini D, Zhang X L. Improvement of delay-bandwidth product in photonic crystal slow-light waveguides. Optics Express, 2010, 18(16): 16309–16319

    [8] Petrov A Y, Eich M. Zero dispersion at small group velocities in photonic crystal waveguides. Applied Physics Letters, 2004, 85(21): 4866–4868

    [9] O’Faolain L, Schulz S A, Beggs D M, White T P, Spasenovic M, Kuipers L, Morichetti F, Melloni A, Mazoyer S, Hugonin J P, Lalanne P, Krauss T F. Loss engineered slow light waveguides. Optics Express, 2010, 18(26): 27627–27638

    [10] Mazoyer S, Baron A, Hugonin J P, Lalanne P, Melloni A. Slow pulses in disordered photonic-crystal waveguides. Applied Optics, 2011, 50(31): G113–G117

    [11] Xu Q F, Almeida V R, Panepucci R R, Lipson M. Experimental demonstration of guiding and confining light in nanometer-size lowrefractive-index material. Optics Letters, 2004, 29(14): 1626–1628

    [12] Lin C Y,Wang X, Chakravarty S, Lee B S, Lai W, Luo J, Jen A K Y, Chen R T. Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement. Applied Physics Letters, 2010, 97(9): 093304-1–093304-3

    [13] Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J. All-optical high-speed signal processing with siliconorganic hybrid slot waveguides. Nature Photonics, 2009, 3(4): 216–219

    [14] Scullion M G, Di Falco A, Krauss T F. Slotted photonic crystal cavities with integrated microfluidics for biosensing applications. Biosensors & Bioelectronics, 2011, 27(1): 101–105

    [15] Di Falco A, O’Faolain L, Krauss T F. Photonic crystal slotted slab waveguides. Photonics and Nanostructures-Fundamentals and Applications, 2008, 6(1): 38–41

    [16] Caer C, Le Roux X, Do V K, Marris-Morini D, Izard N, Vivien L, Gao D S, Cassan E. Dispersion engineering of wide slot photonic crystal waveguides by bragg-like corrugation of the slot. IEEE Photonics Technology Letters, 2011, 23(18): 1298–1300

    [17] Caer C, Le Roux X, Cassan E. Enhanced localization of light in slow wave slot photonic crystal waveguides. Optics Letters, 2012, 37(17): 3660–3662

    [18] Johnson S G, Joannopoulos J D. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Optics Express, 2001, 8(3): 173–190

    [19] Schulz S A, O’Faolain L, Beggs D M, White T P, Melloni A, Krauss T F. Dispersion engineered slow light in photonic crystals: a comparison. Journal of Optics, 2010, 12(10): 104004-1–104004-3

    [20] Oskooi A F, Roundy D, Ibanescu M, Bermel P, Joannopoulos J D, Johnson S G. A flexible free-software package for electromagnetic simulations by the FDTD method. Computer Physics Communications, 2010, 181(3): 687–702

    [21] Wang Z C, Zhu N, Tang Y B, Wosinski L, Dai D X, He S L. Ultracompact low-loss coupler between strip and slot waveguides. Optics Letters, 2009, 34(10): 1498–1500

    [22] Hugonin J P, Lalanne P, White T P, Krauss T F. Coupling into slowmode photonic crystal waveguides. Optics Letters, 2007, 32(18): 2638–2640

    [23] Gao J, Gesuele F, Koh W K, Murray C B, Assefa S, Wong C W. Weak exciton-photon coupling of PbS nanocrystals in air-slot modegap Si photonic crystal nanocavities in the near-infrared. In: Proceedings of Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS). San Jose, CA, 2010

    [24] Mazoyer S, Hugonin J P, Lalanne P. Disorder-induced multiple scattering in photonic-crystal waveguides. Physical Review Letters, 2009, 103(6): 063903-1–063903-4

    [25] Kuramochi E, Notomi M, Hughes S, Shinya A, Watanabe T, Ramunno L. Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs. Physical Review B: Condensed Matter and Materials Physics, 2005, 72(16): 161318-1–161318-4

    [26] Topolancik J, Vollmer F, Illic B. Random high-Q cavities in disordered photonic crystal waveguides. Applied Physics Letters, 2007, 91(20): 201102-1–201102-3

    Charles CAER, Xavier LE ROUX, Samuel SERNA, Weiwei ZHANG, Laurent VIVIEN, Eric CASSAN. Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics[J]. Frontiers of Optoelectronics, 2014, 7(3): 376
    Download Citation