[1] SKINNER S J. Recent advances in perovskite-type materials for solid oxide fuel cell cathodes[J]. Int J Inorg Mater, 2001, 3(2): 113-121.
[3] BRETT D J L, ATKINSON A, BRANDON N P, et al. Intermediate temperature solid oxide fuel cells[J]. Chem Soc Rev, 2008, 37(8): 1568-1578.
[4] KILNER J A. Fast oxygen transport in acceptor doped oxides[J]. Solid State Ion, 2000, 129(11): 13-23.
[5] ULLMANN H, TROFIMENKO N, TIETZ F, et al. Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes[J]. Solid State Ion, 2000, 138(1/2): 79-90.
[6] WEI T, ZHANG Q, HUANG Y H, et al. Cobalt-based double-perovskite symmetrical electrodes with low thermal expansion for solid oxide fuel cells[J]. J Mater Chem, 2012, 22(8): 225-231.
[7] FRONTERA C, CANEIRO A, CARRILLO A E, et al. Tailoring oxygen content on PrBaCo2O5+δ layered cobaltites[J]. Chem Mater, 2005, 17(22): 5439-5445.
[8] TARANCON A, BURRIEL M, SANTISO J, et al. Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells[J]. J Mater Chem, 2010, 20(19): 3799-3813.
[11] TARANCON A, SKINNER S J, CHARATER R J, et al. Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells[J]. J Mater Chem, 2007, 17(30): 3175-3181.
[12] PARFITT D, CHRONEOS A, TARANCN A, et al. Oxygen ion diffusion in cation ordered/disordered GdBaCo2O5+δ[J]. J Mater Chem, 2011, 21(7): 2183-2186.
[13] TASKIN A A, LAVROV A N, ANDO Y. Fast oxygen diffusion in A-site ordered perovskites[J]. Prog Solid State Chem, 2007, 35(2-4): 481-490.
[14] MAHATO N, BANERJEE A, GUPTA A, et al. Progress in material selection for solid oxide fuel cell technology: A review[J]. Prog Mater Sci, 2015; 72: 141-337
[15] DU Z, YAN C, ZHAO H, et al. Effective Ca-doping in Y1-xCaxBaCo2O5+δ cathode materials for intermediate temperature solid oxide fuel cells[J]. J Mater Chem A, 2017, 5(48): 25641-25651.
[16] GAO P, BOLON A, TANEJA M, et al. Thermal expansion and elastic moduli of electrolyte materials for high and intermediate temperature solid oxide fuel cell[J]. Solid State Ion, 2017, 300: 1-9.
[17] ZHAO H, ZHENG Y, YANG C, et al. Electrochemical performance of Pr1-xYxBaCo2O5+δ layered perovskites as cathode materials for intermediate-temperature solid oxide fuel cells[J]. Int J Hydrogen Energy, 2013, 38(36): 16365-16372.
[18] LEE H Y, HUANG K, GOODENOUGH J B. Sr-and Ni-doped LaCoO3 and LaFeO3 perovskites[J]. J Electrochem Soc, 1998, 145(9): 3220-3227.
[19] ZHAO L, NIAN Q, HE B, et al. Novel layered perovskite oxide PrBaCuCoO5+δ as a potential cathode for intermediate-temperature solid oxide fuel cells[J]. J Power Sources, 2010, 195(2): 453-456.
[20] RAVEAU B, SEIKH M. Cobalt oxides: From Crystal Chemistry to Physics[M]. Wiley-VCH, 2012.
[21] SWIERCZEK K, YOSHIKURA N, ZHENG K, et al. Correlation between crystal and transport properties in LnBa0.5Sr0.5Co1.5Fe0.5O5+δ (Ln-selected lanthanides, Y)[J]. Solid State Ion, 2014, 262: 645-649.
[22] KIMJ H, MANTHIRAM A. Layered LnBaCo2O5+δ perovskite cathodes for solid oxide fuel cells: An overview and perspective[J]. J Mater Chem A, 2015, 3(48): 24195-24210.
[24] OLSZEWSKA A, ZHANG Y, DU Z H, et al. Mn-rich SmBaCo0.5Mn1.5O5+δ double perovskite cathode material for SOFCs[J]. Int J Hydrogen Energ, 2019, 44(50): 27587-27599.
[25] ZHANG Y, ZHAO H L, DU Z H, et al. High-performance SmBaMn2O5+δ electrode for symmetrical solid oxide fuel cell[J]. Chem Mater, 2019, 31(10): 3784-3793.
[26] ZHANG Y, ZHANG B Z, ZHAO H L, et al, Electrochemical performance and structural durability of Mg-doped SmBaMn2O5+δ layered perovskite electrode for symmetrical solid oxide fuel cell[J]. Catal Today, 2021, 364: 80-88.
[29] DING H, XUE X. Cobalt-free layered perovskite GdBaFe2O5+x as a novel cathode for intermediate temperature solid oxide fuel cells[J]. J Power Sources, 2010, 195(15): 4718-4721.
[30] ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides[J]. Nat Commun, 2015, 6: 8485.
[31] SARKAR A, DJENADIC R, WANG D, et al. Rare earth and transition metal based entropy stabilized perovskite type oxides[J]. J Eur Ceram Soc, 2018, 38(5): 2318-2327.
[32] LIU D, LIU H H, NING S S, et al. Chrysanthemum-like high-entropy diboride nanoflowers: A new class of high-entropy nanomaterials [J]. J Adv Ceram, 2020, 9(3): 339-348.
[33] LIU J X, SHEN X Q, WU Y, et al. Mechanical properties of hot-pressed high-entropy diboride-based ceramics[J]. J Adv Ceram, 2020, 9(4): 503-510.
[34] YANG Y, BAO H, NI H, et al. A novel facile strategy to suppress Sr segregation for high-entropy stabilized La0.8Sr0.2MnO3-δ cathode[J]. J Power Sources, 2021, 482: 228959.
[36] ZHAO Z F, CHEN H, XIANG H M, et al. High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications[J]. J Adv Ceram, 2020, 9(3): 303-311.
[37] LIU J C, JIN F J, YANG X, et al. YBaCo2O5+δ-based double-perovskite cathodes for intermediate-temperature solid oxide fuel cells with simultaneously improved structural stability and thermal expansion properties[J]. Electrochim Acta, 2019, 297: 344-354.
[38] JIN F J, LI J H, WANG Y, et al. Evaluation of Fe and Mn co-doped layered perovskite PrBaCo2/3Fe2/3Mn1/2O5+δ as a novel cathode for intermediate-temperature solid-oxide fuel cell[J]. Ceram Int, 2018, 44(18): 22489-22496.
[39] JIN F J, LIU J C, SHEN Y, et al. Improved electrochemical performance and thermal expansion compatibility of LnBaCoFeO5+δ-Sm0.2Ce0.8O1.9 (Ln=Pr and Nd) composite cathodes for IT-SOFCs[J]. J Alloy Compd, 2016, 685: 483-491.