• Advanced Photonics Nexus
  • Vol. 2, Issue 4, 046009 (2023)
Yiqi Fang1 and Yunquan Liu1、2、3、*
Author Affiliations
  • 1Peking University, School of Physics, State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, Beijing, China
  • 2Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, China
  • 3Beijing Academy of Quantum Information Sciences, Beijing, China
  • show less
    DOI: 10.1117/1.APN.2.4.046009 Cite this Article Set citation alerts
    Yiqi Fang, Yunquan Liu. Generation and control of extreme ultraviolet free-space optical skyrmions with high harmonic generation[J]. Advanced Photonics Nexus, 2023, 2(4): 046009 Copy Citation Text show less
    References

    [1] T. H. R. Skyrme. A unified field theory of mesons and baryons. Nucl. Phys., 31, 556-569(1962).

    [2] Y. Tokura, N. Kanazawa. Magnetic skyrmion materials. Chem. Rev., 121, 2857-2897(2021).

    [3] B. Göbel, I. Mertig, O. A. Tretiakov. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep., 895, 1-28(2021).

    [4] S. Tsesses et al. Optical skyrmion lattice in evanescent electromagnetic fields. Science, 361, 993-996(2018).

    [5] A. Karnieli et al. Emulating spin transport with nonlinear optics, from high-order skyrmions to the topological Hall effect. Nat. Commun., 12, 1092(2021).

    [6] L. Du et al. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys., 15, 650-654(2019).

    [7] T. J. Davis et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science, 368, eaba6415(2020).

    [8] Y. Shen et al. Supertoroidal light pulses as electromagnetic skyrmions propagating in free space. Nat. Commun., 12, 5891(2021).

    [9] S. Gao et al. Paraxial skyrmionic beams. Phys. Rev. A, 102, 053513(2020).

    [10] Y. J. Shen, E. C. Martínez, C. Rosales-Guzmán. Generation of optical skyrmions with tunable topological textures. ACS Photonics, 9, 296-303(2022).

    [11] W. Lin et al. Microcavity-based generation of full Poincaré beams with arbitrary skyrmion numbers. Phys. Rev. Res., 3, 023055(2021).

    [12] Y. Shen et al. Topological transformation and free-space transport of photonic hopfions. Adv. Photonics, 5, 015001(2023).

    [13] R. Gutiérrez-Cuevas, E. Pisanty. Optical polarization skyrmionic fields in free space. J. Opt., 23, 024004(2021).

    [14] P. B. Corkum. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett., 71, 1994(1993).

    [15] T. Popmintchev et al. Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers. Science, 336, 1287-1291(2012).

    [16] J. Wätzel, J. Berakdar. Topological light fields for highly non-linear charge quantum dynamics and high harmonic generation. Opt. Express, 28, 19469-19481(2020).

    [17] M. Zurch et al. Strong-field physics with singular light beams. Nat. Phys., 8, 743-746(2012).

    [18] K. M. Dorney et al. Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin–orbit momentum conservation. Nat. Photonics, 13, 123-130(2019).

    [19] L. Rego et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science, 364, eaaw9486(2019).

    [20] F. Kong et al. Controlling the orbital angular momentum of high harmonic vortices. Nat. Commun., 8, 14970(2017).

    [21] D. Gauthier et al. Tunable orbital angular momentum in high-harmonic generation. Nat. Commun., 8, 14971(2017).

    [22] L. Rego et al. Nonperturbative twist in the generation of extreme-ultraviolet vortex beams. Phys. Rev. Lett., 117, 163202(2016).

    [23] Y. Fang, S. Lu, Y. Liu. Controlling photon transverse orbital angular momentum in high harmonic generation. Phys. Rev. Lett., 127, 273901(2021).

    [24] A. Yang et al. Spin-manipulated photonic skyrmion-pair for pico-metric displacement sensing. Adv. Sci., 10, 2205249(2023).

    [25] K. S. Youngworth, T. G. Brown. Focusing of high numerical aperture cylindrical-vector beams. Opt. Express, 7, 77-87(2000).

    [26] K. Y. Bliokh, A. Y. Bekshaev, F. Nori. Dual electromagnetism: helicity, spin, momentum and angular momentum. New J. Phys., 15, 033026(2013).

    [27] K. Y. Bliokh, J. Dressel, F. Nori. Conservation of the spin and orbital angular momenta in electromagnetism. New J. Phys., 16, 093037(2014).

    [28] Y. Fang et al. Photoelectronic mapping of the spin–orbit interaction of intense light fields. Nat. Photonics, 15, 115-120(2021).

    [29] Y. Fang et al. Strong-field photoionization of intense laser fields by controlling optical singularities. Sci. China Phys. Mech. Astron., 64, 274211(2021).

    [30] A. Fleischer et al. Spin angular momentum and tunable polarization in high-harmonic generation. Nat. Photonics, 8, 543-549(2014).

    [31] D. A. Kessler, I. Freund. Lissajous singularities. Opt. Lett., 28, 111-113(2003).

    [32] W. Miao, G. Gbur. Design of Lissajous beams. Opt. Lett., 47, 297-300(2022).

    [33] M. Lewenstein et al. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A, 49, 2117(1994).

    [34] N. Nagaosa, Y. Tokura. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol., 8, 899-911(2013).

    [35] X. Yi et al. Hybrid-order Poincaré sphere. Phys. Rev. A, 91, 023801(2015).

    [36] Y. Shen et al. Roadmap on spatiotemporal light fields(2022).

    [37] Y. Fang et al. Probing the orbital angular momentum of intense vortex pulses with strong-field ionization. Light Sci. Appl., 11, 34(2022).

    [38] K. Litzius et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys., 13, 170-175(2017).

    [39] J. Miao et al. Beyond crystallography: diffractive imaging using coherent x-ray light sources. Science, 348, 530-535(2015).

    Yiqi Fang, Yunquan Liu. Generation and control of extreme ultraviolet free-space optical skyrmions with high harmonic generation[J]. Advanced Photonics Nexus, 2023, 2(4): 046009
    Download Citation