[1] YUAN L, LIU Z L, YAN Z G, et al. Effect of mullite phase formed in situ on pore structure and properties of high-purity mullite fibrous ceramics[J]. Ceram Int, 2022, 48(3): 3578-3584.
[2] ECEBAS N, DURSUN G M, YESILOVA A H, et al. Gel casting of mullite for radome applications[J]. Int J Appl Ceram Technol, 2020, 17(1): 264-273.
[3] BEHERA P S, BHATTACHARYYA S. Effect of different alumina sources on phase formation and densification of single-phase mullite ceramic-Reference clay alumina system[J]. Mater Today Commun, 2021, 26: 101818.
[4] OUYANG J, ZHOU Z, ZHANG Y, et al. High morphological stability and structural transition of halloysite (Hunan, China) in heat treatment[J]. Appl Clay Sci, 2014, 101: 16-22.
[5] VISWABASKARAN V, GNANAM F D, BALASUBRAMANIAN M. Mullitisation behaviour of calcined clay-alumina mixtures[J]. Ceram Int, 2003, 29(5): 561-571.
[6] EBADZADEH T. Formation of mullite from precursor powders: Sintering, microstructure and mechanical properties[J]. Mater Sci Eng A, 2003, 355(1-2): 56-61.
[7] SAEIDABADI E K, EBADZADEH T, SALAHI E. Preparation of mullite from alumina/aluminum nitrate and Kaolin clay through spark plasma sintering process[J]. Ceram Int, 2018, 44(17): 21053-21066.
[8] BELLA M L, HAMIDOUCHE M, GREMILLARD L. Preparation of mullite-alumina composite by reaction sintering between Algerian Kaolin and amorphous aluminum hydroxide[J]. Ceram Int, 2021, 47(11): 16208-16220.
[9] LI Y, FENG J J, WANG Y H, et al. Preparation of mullite ceramics with fly ash and clay by pickling process[J]. Int J Appl Ceram Technol, 2015, 12: E132-E137.
[10] SNCHEZ-SOTO P J, ELICHE-QUESADA D, MARTNEZ- MARTNEZ S, et al. Study of a waste Kaolin as raw material for mullite ceramics and mullite refractories by reaction sintering[J]. Materials, 2022, 15(2): 583.
[11] NSIAH-BAAFI E, ANDREWS A. Fabrication of mullite from lithomargic clay via spark plasma sintering[J]. Ceram Int, 2017, 43(16): 14277-14280.
[12] DA SILVA V J, DE ALMEIDA E P, GONALVES W P, et al. Mineralogical and dielectric properties of mullite and cordierite ceramics produced using wastes[J]. Ceram Int, 2019, 45(4): 4692-4699.
[14] CYGAN T, WOZNIAK J, PETRUS M, et al. The effect of microstructure evolution on mechanical properties in novel alumina-montmorillonite composites[J]. Int J Refract Met Hard Mater, 2019, 80: 195-203.
[15] WU K, YE Q, WU R P, et al. Alkali metal-promoted aluminum-pillared montmorillonites: High-performance CO2 adsorbents[J]. J Solid State Chem, 2020, 291: 121585.
[16] XIONG J W, LIU Y H, YANG X H, et al. Thermal and mechanical properties of polyurethane/montmorillonite nanocomposites based on a novel reactive modifier[J]. Polym Degrad Stab, 2004, 86(3): 549-555.
[17] MARTINEZ J M, VOLZONE C, GARRIDO L B. Thermal transformations up to 1 200 ℃ of Al-pillared montmorillonite precursors prepared by different OH-Al polymers[J]. J Therm Anal Calorim, 2017, 128(1): 61-69.
[18] LONG L, XIAO P, LUO H, et al. Enhanced electromagnetic shielding property of cf/mullite composites fabricated by spark plasma sintering[J]. Ceram Int, 2019, 45(15): 18988-18993.
[19] MEI H, FAN Y T, YAN Y K, et al. Three-dimensional CNT lamellae reinforced SiC for enhanced mechanical and electromagnetic shielding properties[J]. Ceram Int, 2020, 46(16): 25008-25016.
[20] ESLAMI-SHAHED H, NEKOUEE K, EHSANI N. The effects of adding CNTs and GNPs on the microstructure and mechanical properties of hexagonal-boron nitride[J]. Ceram Int, 2020, 46(14): 22005-22014.
[21] MUSTAFA T, HUANG J L, GAO J, et al. Nanoplates forced alignment of multi-walled carbon nanotubes in alumina composite with high strength and toughness[J]. J Eur Ceram Soc, 2021, 41(11): 5541-5547.
[22] HAJIABOUTALEBI M, RAJABI M, KHANALI O. Physical and mechanical properties of SiC-CNTs nano-composites produced by a rapid microwave process[J]. J Mater Sci Mater Electron, 2017, 28(12): 8986-8992.
[23] BOUDRICHE L, CHAMAYOU A, CALVET R, et al. Influence of different dry milling processes on the properties of an attapulgite clay, contribution of inverse gas chromatography[J]. Powder Technol, 2014, 254: 352-363.
[24] PENG B, TAKAI C K, RAZAVI-KHOSROSHAHI H, et al. Effect of CNTs on morphology and electromagnetic properties of non-firing CNTs/silica composite ceramics[J]. Adv Powder Technol, 2018, 29(8): 1865-1870.
[25] LIU C C, CAI W Q, LIU L C. Hydrothermal carbonization synthesis of Al-pillared montmorillonite@carbon composites as high performing toluene adsorbents[J]. Appl Clay Sci, 2018, 162: 113-120.
[29] ZHANG J, LIU T F, LIU M X. Hydrothermal synthesis of halloysite nanotubes @carbon nanocomposites with good biocompatibility[J]. Microporous Mesoporous Mater, 2018, 266: 155-163.
[30] AYGUZER YASAR Z, DELUCCA V A, HABER R A. Effect of carbon source on the properties of dense α-SiC[J]. Mater Res Express, 2021, 8(12): 125601.
[31] INAGE K, AKATSUKA K, IWASAKI K, et al. Effect of crystallinity and microstructure on mechanical properties of CaO-Al2O3-SiO2 glass toughened by precipitation of hexagonal CaAl2Si2O8 crystals[J]. J Non Cryst Solids, 2020, 534: 119948.
[32] PEREIRA F S, SILVA AGOSTINI D L, JOB A E, et al. Thermal studies of chitin-chitosan derivatives[J]. J Therm Anal Calorim, 2013, 114(1): 321-327.
[33] QIAN W Z, LIU T, WEI F, et al. Quantitative Raman characterization of the mixed samples of the single and multi-wall carbon nanotubes[J]. Carbon, 2003, 41(9): 1851-1854.
[34] PRAMONO A E, NURA M Z, WAHYUADI J, et al. Effect of sintering temperature on the relationship of electrical conductivity and porosity characteristics of carbon ceramic composites[J]. J Ceram Process Res, 2019, 20(4): 333-346.
[35] XIE Q Y, WOSU S N. Spark plasma sintering of TaC and/or CNTs reinforced SiC CMCs[J]. J Compos Mater, 2016, 50(6): 739-749.
[36] HU W. Surface densification of silica ceramic[J]. Key Eng Mater, 2014, 633: 69-72.
[37] YANG H L, LI Y, LI Q G, et al. Preparation and properties of porous silicon nitride ceramics with polymethyl methacrylate as pore-forming agent[J]. Ceram Int, 2020, 46(10): 17122-17129.
[38] PRAMONO A E, FIRDAUS M, RATRIOMASYO W, et al. Engineering of ceramic carbon composites made from coconut coir and organoclay for electrical and thermal conductive properties[J]. J Ceram Process Res, 2017, 18(10): 748-753.
[39] WANG S, GONG H Y, ASHFAQ M Z, et al. Introducing MWCNTs conductive network in polymer-derived SiCN ceramics for broadband electromagnetic wave absorption[J]. Ceram Int, 2022, 48(16): 23989-24002.
[40] LI G M, MAO L T, ZHU B S, et al. Novel ceramic-based microwave absorbents derived from gangue[J]. J Mater Chem C, 2020, 8: 14238-14245.
[41] KANBARA T, YAMAMOTO T, IKAWA H, et al. Preparation and characterization of porous and electrically conducting carbon-clay composites[J]. J Mater Sci, 1989, 24(5): 1552-1558.
[43] NIGAY P M, NZIHOU A, WHITE C E, et al. Structure and properties of clay ceramics for thermal energy storage[J]. J Am Ceram Soc, 2017, 100(10): 4748-4759.