• Chinese Journal of Lasers
  • Vol. 47, Issue 11, 1102002 (2020)
Pang Xiaotong1, Gong Qunfu2, Wang Zhijie2, Li Zhuguo1, and Yao Chengwu1、*
Author Affiliations
  • 1Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2PLA 4724 Plant, Shanghai 200436, China
  • show less
    DOI: 10.3788/CJL202047.1102002 Cite this Article Set citation alerts
    Pang Xiaotong, Gong Qunfu, Wang Zhijie, Li Zhuguo, Yao Chengwu. Microstructures and Mechanical Properties of 30CrMnSiA and 30CrMnSiNi2A High-Strength Steels After Laser-Cladding Repair[J]. Chinese Journal of Lasers, 2020, 47(11): 1102002 Copy Citation Text show less
    Morphology and size of 30CrMnSiA alloy powders. (a) SEM morphology; (b) particle size distribution
    Fig. 1. Morphology and size of 30CrMnSiA alloy powders. (a) SEM morphology; (b) particle size distribution
    Schematics of laser-cladding and sampling of mechanical properties test samples. (a) Substrate with notch for lase cladding; (b) diagram of laser-cladding; (c) laser scanning pattern; (d) sampling method of mechanical properties test samples
    Fig. 2. Schematics of laser-cladding and sampling of mechanical properties test samples. (a) Substrate with notch for lase cladding; (b) diagram of laser-cladding; (c) laser scanning pattern; (d) sampling method of mechanical properties test samples
    Schematics of tensile samples and impact samples. (a) Impact sample; (b) tensile sample
    Fig. 3. Schematics of tensile samples and impact samples. (a) Impact sample; (b) tensile sample
    Cross-section macroscopic morphology of two high-strength steels after multi-layer laser-cladding. (a) 30CrMnSiA substrate; (b) HAZ on 30CrMnSiA substrate; (c) 30CrMnSiNi2A substrate; (d) HAZ on 30CrMnSiNi2A substrate
    Fig. 4. Cross-section macroscopic morphology of two high-strength steels after multi-layer laser-cladding. (a) 30CrMnSiA substrate; (b) HAZ on 30CrMnSiA substrate; (c) 30CrMnSiNi2A substrate; (d) HAZ on 30CrMnSiNi2A substrate
    Microstructures of two high-strength steel substrates and HAZ. (a) 30CrMnSiA substrate; (b) HAZ on 30CrMnSiA substrate; (c) 30CrMnSiNi2A substrate; (d) HAZ on 30CrMnSiNi2A substrate
    Fig. 5. Microstructures of two high-strength steel substrates and HAZ. (a) 30CrMnSiA substrate; (b) HAZ on 30CrMnSiA substrate; (c) 30CrMnSiNi2A substrate; (d) HAZ on 30CrMnSiNi2A substrate
    Microstructures of different cladding layers on 30CrMnSiA substrate. (a) The first layer; (b) the second layer; (c) the third layer; (d) the fourth layer; (e) the fifth layer; (f) the sixth layer (cap layer)
    Fig. 6. Microstructures of different cladding layers on 30CrMnSiA substrate. (a) The first layer; (b) the second layer; (c) the third layer; (d) the fourth layer; (e) the fifth layer; (f) the sixth layer (cap layer)
    Microstructures of different cladding layers on 30CrMnSiNi2A substrate. (a) The first layer; (b) the second layer; (c) the third layer; (d) the fourth layer; (e) the fifth layer; (f) the sixth layer (cap layer)
    Fig. 7. Microstructures of different cladding layers on 30CrMnSiNi2A substrate. (a) The first layer; (b) the second layer; (c) the third layer; (d) the fourth layer; (e) the fifth layer; (f) the sixth layer (cap layer)
    Metallography image and microhardness distribution in cross-section of cladding samples on two high strength steel substrates. (a) 30CrMnSiA, metallography image; (b) 30CrMnSiNi2A, metallography image; (c) 30CrMnSiA, microhardness distribution; (d) 30CrMnSiNi2A, microhardness distribution
    Fig. 8. Metallography image and microhardness distribution in cross-section of cladding samples on two high strength steel substrates. (a) 30CrMnSiA, metallography image; (b) 30CrMnSiNi2A, metallography image; (c) 30CrMnSiA, microhardness distribution; (d) 30CrMnSiNi2A, microhardness distribution
    Mechanical properties of two substrates and cladding samples at room-temperature. (a) Impact toughness; (b) tensile property
    Fig. 9. Mechanical properties of two substrates and cladding samples at room-temperature. (a) Impact toughness; (b) tensile property
    Impact fracture morphologies of cladding samples on different substrates. (a)(c) Fracture of cladding sample on 30CrMnSiA substrate and partially enlarged crack source; (c)(d) fracture of cladding sample on 30CrMnSiNi2A substrate and partially enlarged crack source
    Fig. 10. Impact fracture morphologies of cladding samples on different substrates. (a)(c) Fracture of cladding sample on 30CrMnSiA substrate and partially enlarged crack source; (c)(d) fracture of cladding sample on 30CrMnSiNi2A substrate and partially enlarged crack source
    Tensile fracture in cross-section of cladding sample on 30CrMnSiA substrate. (a) Cross-section image; (b)--(d) partially enlarged images
    Fig. 11. Tensile fracture in cross-section of cladding sample on 30CrMnSiA substrate. (a) Cross-section image; (b)--(d) partially enlarged images
    Tensile fracture in cross-section of cladding sample on 30CrMnSiNi2A substrate. (a) Cross-section image; (b)--(d) partially enlarged images
    Fig. 12. Tensile fracture in cross-section of cladding sample on 30CrMnSiNi2A substrate. (a) Cross-section image; (b)--(d) partially enlarged images
    ElementCCrMnSiFe
    Mass fraction /%0.2860.9541.0120.977Bal.
    Table 1. Chemical composition of 30CrMnSiA alloy powders
    Pang Xiaotong, Gong Qunfu, Wang Zhijie, Li Zhuguo, Yao Chengwu. Microstructures and Mechanical Properties of 30CrMnSiA and 30CrMnSiNi2A High-Strength Steels After Laser-Cladding Repair[J]. Chinese Journal of Lasers, 2020, 47(11): 1102002
    Download Citation