[1] Song H J, Nagatsuma T. Present and future of terahertz communications[J]. IEEE Trans. on Terahertz Science and Technology, 2011, 1(1): 256-263.
[2] Saeed A, Gurbuz O, Akkas M A. Terahertz communications at various atmospheric altitudes[J]. Physical Communication, 2020, 41: 101-113.
[5] Xu R, Gao S, Izquierdo B S, et al. A review of broadband low-cost and high-gain low-terahertz antennas for wireless communications applications[J]. IEEE Access, 2020, 8: 57615-57629.
[6] Balani W, Sarvagya M, Ali T, et al. Design techniques of super-wideband antenna-existing and future prospective[J]. IEEE Access, 2019, 7: 141241-141257.
[7] Goudarzi A, Honari M M, Mirzavand R. Resonant cavity antennas for 5G communication systems: A review[J]. Electronics, 2020, 9(7): 1080.
[8] Wu F, Luk K M. Circular polarization and reconfigurability of Fabry-Perot resonator antenna through metamaterial-loaded cavity[J]. IEEE Trans. on Antennas and Propagation, 2019, 67(4): 2196-2208.
[9] Ren J, Jiang W, Zhang K, et al. A high-gain circularly polarized Fabry-Perot antenna with wideband low-RCS property[J]. IEEE Antennas and Wireless Propagation Lett., 2018, 17(5): 853-856.
[10] Aqlan B, Himdi M, Vettikalladi H, et al. A circularly polarized sub-terahertz antenna with low-profile and high-gain for 6G wireless communication systems[J]. IEEE Access, 2021, 9: 122607-122617.
[11] Akbari M, Gupta S, Farahani M, et al. Gain enhancement of circularly polarized dielectric resonator antenna based on FSS superstrate for MMW applications[J]. IEEE Trans. on Antennas and Propagation, 2016, 64(12): 5542-5546.