• High Power Laser and Particle Beams
  • Vol. 34, Issue 3, 031019 (2022)
Lingjun Tu1、2, Chao Feng1、3、*, Xiaofan Wang4, and Zhentang Zhao1、3
Author Affiliations
  • 1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
  • 4Shenzhen Integrated Particle Facility Research Institute, Shenzhen 518000, China
  • show less
    DOI: 10.11884/HPLPB202234.210282 Cite this Article
    Lingjun Tu, Chao Feng, Xiaofan Wang, Zhentang Zhao. Simulation of generating attosecond water window band pulses by enhanced self-amplified spontaneous emission method[J]. High Power Laser and Particle Beams, 2022, 34(3): 031019 Copy Citation Text show less
    References

    [1] Duris J, Li Siqi, Driver T, et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser[J]. Nature Photonics, 14, 30-36(2020).

    [2] Corkum P B, Krausz F. Attosecond science[J]. Nature Physics, 3, 381-387(2007).

    [3] Teichmann S M, Silva F, Cousin S L, et al. 0.5-keV soft X-ray attosecond continua[J]. Nature Communications, 7, 11493(2016).

    [4] Hentschel M, Kienberger R, Spielmann C, et al. Attosecond metrology[J]. Nature, 414, 509-513(2001).

    [5] Goulielmakis E, Schultze M, Hofstetter M, et al. Single-cycle nonlinear optics[J]. Science, 320, 1614-1617(2008).

    [6] Gaumnitz T, Jain A, Pertot Y, et al. Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver[J]. Optics Express, 25, 27506-27518(2017).

    [7] Takahashi E J, Lan Pengfei, Mücke O D, et al. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses[J]. Nature Communications, 4, 2691(2013).

    [8] Huang Zhirong, Kim K J. Review of X-ray free-electron laser theory[J]. Physical Review Special Topics—Accelerators and Beams, 10, 034801(2007).

    [9] Saldin E L, Schneidmiller E A, Yurkov M V. Statistical properties of radiation from VUV and X-ray free electron laser[J]. Optics Communications, 148, 383-403(1998).

    [10] Zholents A A. Method of an enhanced self-amplified spontaneous emission for X-ray free electron lasers[J]. Physical Review Special Topics—Accelerators and Beams, 8, 040701(2005).

    [11] Shim C H, Kim D E, Ko I S. Study of ESASE scheme with microbunching instability f generating attosecondterawatt Xray pulse in XFELs[C]Proceedings of the 8th International Particle Accelerat Conference. 2017.

    [12] MacArthur J P, Duris J, Huang Zhirong, et al. High power subfemtosecond Xray pulse study f the LCLS[C]Proceedings of IPAC 2017. 2017.

    [13] Carlson D R, Hutchison P, Hickstein D D, et al. Generating few-cycle pulses with integrated nonlinear photonics[J]. Optics Express, 27, 37374-37382(2019).

    [14] Zheng Qi, Chao Feng, Deng Haixiao, et al. Generating attosecond X-ray pulses through an angular dispersion enhanced self-amplified spontaneous emission free electron laser[J]. Physical Review Accelerators and Beams, 21, 120703(2018).

    [15] Zeng Li, Feng Chao, Wang Xiaofan, . et al. A super-fast free-electron laser simulation code for online optimization[J]. Photonics, 7, 1-12(2020).

    [16] Bl M. ELEGANT: a flexible SDDScompliant code f accelerat simulation[R]. Advanced Photon Source LS287. US Department of Energy, 2000.

    [17] Reiche S. GENESIS 1.3: a fully 3D time-dependent FEL simulation code[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 429, 243-248(1999).

    Lingjun Tu, Chao Feng, Xiaofan Wang, Zhentang Zhao. Simulation of generating attosecond water window band pulses by enhanced self-amplified spontaneous emission method[J]. High Power Laser and Particle Beams, 2022, 34(3): 031019
    Download Citation