• Optics and Precision Engineering
  • Vol. 32, Issue 13, 2091 (2024)
Yong LIU1,2,*, Shengyang XU1, Lixiaoxue CHEN1, Wanlu LI1, and Pengfei DONG1
Author Affiliations
  • 1College of Mechanical, Electrical&Information Engineering, Shandong University, Weihai264209, China
  • 2Associated Engineering Research Center of Mechanics & Mechatronic Equipment, Shandong University, Weihai6409, China
  • show less
    DOI: 10.37188/OPE.20243213.2091 Cite this Article
    Yong LIU, Shengyang XU, Lixiaoxue CHEN, Wanlu LI, Pengfei DONG. Additive regulated electrochemical microfluidic beam 3D printing[J]. Optics and Precision Engineering, 2024, 32(13): 2091 Copy Citation Text show less
    Morphology of microfluidic beam deposition with different proportions of additives
    Fig. 1. Morphology of microfluidic beam deposition with different proportions of additives
    Finite element simulation model of microbeam electrolysis system
    Fig. 2. Finite element simulation model of microbeam electrolysis system
    Numerical simulation of microbeam electrolysis system deposition of copper columns for 40 minutes(legend indicating the flow velocity of the liquid beam and arrow indicating the current vector)
    Fig. 3. Numerical simulation of microbeam electrolysis system deposition of copper columns for 40 minutes(legend indicating the flow velocity of the liquid beam and arrow indicating the current vector)
    Deposition velocity distribution curves of cathode surface with different deposition heights
    Fig. 4. Deposition velocity distribution curves of cathode surface with different deposition heights
    Schematic diagram of electrochemical 3D printing experimental platform
    Fig. 5. Schematic diagram of electrochemical 3D printing experimental platform
    Mean value of factor data and signal-to-noise ratio(SNR)
    Fig. 6. Mean value of factor data and signal-to-noise ratio(SNR)
    Response surface model of factors A-SPS, B-PEG, C-Cl- and D-current amplitude to surface roughness
    Fig. 7. Response surface model of factors A-SPS, B-PEG, C-Cl- and D-current amplitude to surface roughness
    Surface roughness with different process parameters
    Fig. 8. Surface roughness with different process parameters
    Helix structure printed with optimal parameters
    Fig. 9. Helix structure printed with optimal parameters
    Spiral structure printed without additives
    Fig. 10. Spiral structure printed without additives
    SPS/PEG/Cl-Morphology characteristicsFormation reasons
    Excess SPSDark red or black, non-glossy coating in low current density regions; numerous pits in high current density regionsExcess SPS inhibits copper crystallization
    Low SPSNon-glossy in low current density regions, not burnt in high current density regions, small glossy areaInsufficient SPS on the cathode surface to form a glossy area
    Excess PEGGlossy in high and medium current density regions, rough in low current density regionsPEG cannot inhibit hydrogen evolution in low current density regions
    Low PEGPoor leveling and glossiness in high and medium current density regionsThe consumption rate of PEG molecules during electrodeposition is less than the diffusion rate of the leveling agent from the solution to the electrode surface
    Excess Cl-Red deposition morphology in high, medium, and low current density regions"Chlorine bridge" effect between copper ions and chloride ions increases polarization current
    Low Cl-Sponge-like burnt appearance in high current density regionsLack of CuCl- film formation on the cathode metal surface
    Table 1. Single additive variable deposition morphology and formation reasons
    Boundary conditionBoundaryProperty
    Anode surface2,8Φs,ext=3 V
    Cathode surface5Φs,ext=0 V
    Insulation3,7-
    Specified normal grid velocity5Vn
    Zero normal grid velocity4,6-
    Inlet1U0=1 m/s
    Outlet4,6-
    Steady-state free surface3,7-
    Table 2. Domain definitions and boundary conditions for microbeam electrolysis system simulation
    FactorsLevel 1Level 2Level 3
    SPS Concentration/10-6104070
    PEG Concentration/10-650100150
    Cl- Concentration/10-6306090
    CuSO4/(g·L-14070100
    H2SO4/(g·L-1150180210
    Table 3. Value of controllable factors on different levels
    No.SPS/10-6PEG/10-6Cl-/10-6CuSO4/(g·L-1H2SO4/(g·L-1Surface-ness/Sa
    11050304015021
    21050307018022.68
    310503010021020.04
    410100604018011.28
    510100607021010.68
    6101006010015012.12
    710150904021022.44
    810150907015023.64
    9101509010018022.44
    1040100904015014.06
    1140100907018016.53
    12401009010021013.11
    1340150304018017.765
    1440150307021018.715
    15401503010015016.815
    164050604021016.91
    174050607015015.58
    1840506010018013.775
    1970150604015020.88
    2070150607018022.08
    21701506010021018.48
    227050904018017.76
    237050907021021.36
    2470509010015022.68
    2570100304021012.96
    267050307015016.44
    2770503010018021.36
    Table 4. Orthogonal test result created by Minitab
    FactorCodeConversion formula between encoded and real valuesLevel
    Encoded valueReal value-101
    SPS/10-6AaA=(a-40)/10304050
    PEG/10-6BbB=(b-100)/2080100120
    Cl-/10-6CcC=(c-60)/20406080
    Current amplitude /mADdD=(d-7.5)/2.557.510
    Table 5. Response surface analysis factors and levels
    No.SPS/10-6PEG/10-6Cl-/10-6

    Current

    amplitude

    /mA

    Surface

    roughness

    /μm

    No.SPS/10-6PEG/10-6Cl-/10-6

    Current

    amplitude

    /mA

    Surface roughness

    /μm

    140100607.51.171530100407.515.74
    250100807.55.59164010040105.24
    3408060108.93174012060102.54
    45010060510.87184080407.515.24
    53080607.516.5419401206056.04
    63010060109.762040120807.58.34
    74010080106.842130120607.58.88
    840120407.54.062230100807.511.34
    9401004057.52235010060105.56
    10301006058.242440100607.50.07
    11401008056.312550100407.511.24
    1250120607.58.51265080607.511.89
    13408060512.452740100607.50.69
    144080807.57.42
    Table 6. Response surface analysis scheme and test results
    SourceDfMean squareF-valueP-value
    Model1433.2213.04<0.000 1**
    A-SPS123.809.340.010 0*
    B-PEG198.0438.47<0.000 1**
    C-Cl-114.085.530.036 7*
    D-Current amplitude118.085.530.036 7*
    AB14.841.900.193 3
    AC10.422 50.165 80.691 1
    AD111.564.540.054 6
    BC136.6014.360.002 6**
    BD10.010 00.003 90.951 1
    CD12.250.882 80.366 0
    A²1207.5081.42<0.000 1**
    B²1113.4744.52<0.000 1**
    C²178.0330.62<0.000 1**
    D²121.878.580.012 6*
    Lack of fit test103.009.880.095 3
    Table 7. Results of variance analysis of surface roughness
    Yong LIU, Shengyang XU, Lixiaoxue CHEN, Wanlu LI, Pengfei DONG. Additive regulated electrochemical microfluidic beam 3D printing[J]. Optics and Precision Engineering, 2024, 32(13): 2091
    Download Citation