• High Power Laser Science and Engineering
  • Vol. 4, Issue 3, 03000e24 (2016)
Nasr A.M. Hafz, Song Li, Guangyu Li, Mohammad Mirzaie, Ming Zeng, and Jie Zhang
Author Affiliations
  • Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.1017/hpl.2016.25 Cite this Article Set citation alerts
    Nasr A.M. Hafz, Song Li, Guangyu Li, Mohammad Mirzaie, Ming Zeng, Jie Zhang. Generation of high-quality electron beams by ionization injection in a single acceleration stage[J]. High Power Laser Science and Engineering, 2016, 4(3): 03000e24 Copy Citation Text show less
    Raw images of electron beam energy spectra for 15 shots divided into 5 groups, each group is for a fixed gas mixture concentration. (a) 3 typical spectra for beams generated from laser-driven pure He gas jet, (b) results for 0.1% $\text{N}_{2}$ mixed in 99.9% of He, (c) results for 0.3% $\text{N}_{2}$ mixed in 99.7% of He, (d) 0.5% $\text{N}_{2}$ mixed in 99.5% of He, and (e) 1% $\text{N}_{2}$ mixed in 99% of He. For (a–e), the unmatched laser–plasma parameter $k_{p}w_{0}$ is 11.2, 11.8, 13.6, 11.8, and 10.8, respectively. The laser power for all the shots is 30 TW level, and the helium electron density is shown for each group.
    Fig. 1. Raw images of electron beam energy spectra for 15 shots divided into 5 groups, each group is for a fixed gas mixture concentration. (a) 3 typical spectra for beams generated from laser-driven pure He gas jet, (b) results for 0.1% $\text{N}_{2}$ mixed in 99.9% of He, (c) results for 0.3% $\text{N}_{2}$ mixed in 99.7% of He, (d) 0.5% $\text{N}_{2}$ mixed in 99.5% of He, and (e) 1% $\text{N}_{2}$ mixed in 99% of He. For (a–e), the unmatched laser–plasma parameter $k_{p}w_{0}$ is 11.2, 11.8, 13.6, 11.8, and 10.8, respectively. The laser power for all the shots is 30 TW level, and the helium electron density is shown for each group.
    Monoenergetic peak energy and FWHM energy spread of electron beams as a function of laser power for four different concentrations of nitrogen–helium gas mixture targets: (a) 0.1% $\text{N}_{2}$ mixed in 99.9% of He, (b) 0.3% $\text{N}_{2}$ mixed in 99.7% of He, (c) 0.5% $\text{N}_{2}$ mixed in 99.5% of He, and (d) 1% $\text{N}_{2}$ mixed in 99% of He. The helium plasma density is $5.0\times 10^{18}~\text{cm}^{-3}$ in all plots, expect for the case of (d) where the density range is slightly different. The unmatched laser–plasma parameters for all points in this graphs are in the range of $k_{p}w_{0}\sim 10.8{-}12.1$ and $2(a_{0})^{1/2}\sim 1.9{-}2.2$.
    Fig. 2. Monoenergetic peak energy and FWHM energy spread of electron beams as a function of laser power for four different concentrations of nitrogen–helium gas mixture targets: (a) 0.1% $\text{N}_{2}$ mixed in 99.9% of He, (b) 0.3% $\text{N}_{2}$ mixed in 99.7% of He, (c) 0.5% $\text{N}_{2}$ mixed in 99.5% of He, and (d) 1% $\text{N}_{2}$ mixed in 99% of He. The helium plasma density is $5.0\times 10^{18}~\text{cm}^{-3}$ in all plots, expect for the case of (d) where the density range is slightly different. The unmatched laser–plasma parameters for all points in this graphs are in the range of $k_{p}w_{0}\sim 10.8{-}12.1$ and $2(a_{0})^{1/2}\sim 1.9{-}2.2$.
    3D-PIC simulation results using OSIRIS code. Panels (a–c) are results from ionization injection, while (d–f) are from self-injection in pure helium, detailed parameters are shown in the text. (a) and (d) Evolution of the maximum laser electric field and pseudopotential difference; (b) and (e) injected electron charge along the propagation; (c) and (f) electron energy spectra.
    Fig. 3. 3D-PIC simulation results using OSIRIS code. Panels (a–c) are results from ionization injection, while (d–f) are from self-injection in pure helium, detailed parameters are shown in the text. (a) and (d) Evolution of the maximum laser electric field and pseudopotential difference; (b) and (e) injected electron charge along the propagation; (c) and (f) electron energy spectra.
    Nasr A.M. Hafz, Song Li, Guangyu Li, Mohammad Mirzaie, Ming Zeng, Jie Zhang. Generation of high-quality electron beams by ionization injection in a single acceleration stage[J]. High Power Laser Science and Engineering, 2016, 4(3): 03000e24
    Download Citation