• Photonics Research
  • Vol. 11, Issue 11, 1945 (2023)
Zi-Wen Zhang1、2, Chao-Hai Du1、2、*, Yu-Lu Lei2, Juan-Feng Zhu3, and Pu-Kun Liu2
Author Affiliations
  • 1Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing 100871, China
  • 2State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University, Beijing 100871, China
  • 3Science, Mathematics and Technology (SMT), Singapore University of Technology and Design, Singapore 487372, Singapore
  • show less
    DOI: 10.1364/PRJ.499770 Cite this Article Set citation alerts
    Zi-Wen Zhang, Chao-Hai Du, Yu-Lu Lei, Juan-Feng Zhu, Pu-Kun Liu, "Broadband infinite-Q plasmons enable intense Smith–Purcell radiation," Photonics Res. 11, 1945 (2023) Copy Citation Text show less
    References

    [1] S. J. Smith, E. M. Purcell. Visible light from localized surface charges moving across a grating. Phys. Rev., 92, 1069(1953).

    [2] G. Doucas, V. Blackmore, B. Ottewell, C. Perry, P. G. Huggard, E. Castro-Camus, M. B. Johnston, J. L. Hughes, M. F. Kimmitt, B. Redlich, A. van der Meer. Longitudinal electron bunch profile diagnostics at 45  MeV using coherent Smith-Purcell radiation. Phys. Rev. Spec. Top. Accel. Beams, 9, 092801(2006).

    [3] L. Schächter, A. Ron. Smith-Purcell free-electron laser. Phys. Rev. A, 40, 876-896(1989).

    [4] Y. Yang, C. Roques-Carmes, S. E. Kooi, H. Tang, J. Beroz, E. Mazur, I. Kaminer, J. D. Joannopoulos, M. Soljačić. Photonic flatband resonances for free-electron radiation. Nature, 613, 42-47(2023).

    [5] Y. Yang, A. Massuda, C. Roques-Carmes, S. E. Kooi, T. Christensen, S. G. Johnson, J. D. Joannopoulos, O. D. Miller, I. Kaminer, M. Soljačić. Maximal spontaneous photon emission and energy loss from free electrons. Nat. Phys., 14, 894-899(2018).

    [6] S. L. Chuang, J. A. Kong. Enhancement of Smith–Purcell radiation from a grating with surface-plasmon excitation. J. Opt. Soc. Am. A, 1, 672-676(1984).

    [7] Z. Su, B. Xiong, Y. Xu, Z. Cai, J. Yin, R. Peng, Y. Liu. Manipulating Cherenkov radiation and Smith–Purcell radiation by artificial structures. Adv. Opt. Mater., 7, 1801666(2019).

    [8] Z. Wang, K. Yao, M. Chen, H. Chen, Y. Liu. Manipulating Smith-Purcell emission with Babinet metasurfaces. Phys. Rev. Lett., 117, 157401(2016).

    [9] Z. Su, F. Cheng, L. Li, Y. Liu. Complete control of Smith-Purcell radiation by graphene metasurfaces. ACS Photon., 6, 1947-1954(2019).

    [10] L. Jing, X. Lin, Z. Wang, I. Kaminer, H. Hu, E. Li, Y. Liu, M. Chen, B. Zhang, H. Chen. Polarization shaping of free-electron radiation by gradient bianisotropic metasurfaces. Laser Photon. Rev., 15, 2000426(2021).

    [11] J.-F. Zhu, C.-H. Du, Z.-W. Zhang, P.-K. Liu, L. Zhang, A. W. Cross. Smith–Purcell radiation from helical grating to generate wideband vortex beams. Opt. Lett., 46, 4682-4685(2021).

    [12] L. Jing, Z. Wang, X. Lin, B. Zheng, S. Xu, L. Shen, Y. Yang, F. Gao, M. Chen, H. Chen. Spiral field generation in Smith-Purcell radiation by helical metagratings. Research, 2019, 3806132(2019).

    [13] Z.-W. Zhang, J.-F. Zhu, C.-H. Du, F. Gao, F.-Y. Han, P.-K. Liu. Chiral plasmons enable coherent vortex Smith–Purcell radiation. Laser Photon. Rev., 17, 2200420(2023).

    [14] M. Wang, F. Liu, Y. Lin, K. Cui, X. Feng, W. Zhang, Y. Huang. Vortex Smith-Purcell radiation generation with holographic grating. Photon. Res., 8, 1309-1315(2020).

    [15] R. Remez, N. Shapira, C. Roques-Carmes, R. Tirole, Y. Yang, Y. Lereah, M. Soljačić, I. Kaminer, A. Arie. Spectral and spatial shaping of Smith-Purcell radiation. Phys. Rev. A, 96, 061801(2017).

    [16] J. R. M. Saavedra, D. Castells-Graells, F. J. García de Abajo. Smith-Purcell radiation emission in aperiodic arrays. Phys. Rev. B, 94, 035418(2016).

    [17] A. Karnieli, D. Roitman, M. Liebtrau, S. Tsesses, N. Van Nielen, I. Kaminer, A. Arie, A. Polman. Cylindrical metalens for generation and focusing of free-electron radiation. Nano Lett., 22, 5641-5650(2022).

    [18] Y.-C. Lai, T. C. Kuang, B. H. Cheng, Y.-C. Lan, D. P. Tsai. Generation of convergent light beams by using surface plasmon locked Smith-Purcell radiation. Sci. Rep., 7, 11096(2017).

    [19] S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, R. Zhong. Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam. Appl. Phys. Lett., 104, 201104(2014).

    [20] S. Liu, P. Zhang, W. Liu, S. Gong, R. Zhong, Y. Zhang, M. Hu. Surface polariton Cherenkov light radiation source. Phys. Rev. Lett., 109, 153902(2012).

    [21] H. Hu, X. Lin, D. Liu, H. Chen, B. Zhang, Y. Luo. Broadband enhancement of Cherenkov radiation using dispersionless plasmons. Adv. Sci., 9, 2200538(2022).

    [22] J.-F. Zhu, C.-H. Du, L.-Y. Bao, P.-K. Liu. Regenerated amplification of terahertz spoof surface plasmon radiation. New J. Phys., 21, 033021(2019).

    [23] D. Zhang, Y. Zeng, Y. Bai, Z. Li, Y. Tian, R. Li. Coherent surface plasmon polariton amplification via free-electron pumping. Nature, 611, 55-60(2022).

    [24] S. Kim, I.-K. Baek, R. Bhattacharya, D. Hong, M. Sattorov, A. Bera, J.-K. So, D.-S. Kim, G.-S. Park. High-Q metallic Fano metamaterial for highly efficient Cerenkov lasing. Adv. Opt. Mater., 6, 1800041(2018).

    [25] C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, M. Soljačić. Bound states in the continuum. Nat. Rev. Mater., 1, 16048(2016).

    [26] K. L. Koshelev, Z. F. Sadrieva, A. A. Shcherbakov, Y. S. Kivshar, A. A. Bogdanov. Bound states in the continuum in photonic structures. Phys. Usp., 66, 494-517(2023).

    [27] D. C. Marinica, A. G. Borisov, S. V. Shabanov. Bound states in the continuum in photonics. Phys. Rev. Lett., 100, 183902(2008).

    [28] Y. Liang, K. Koshelev, F. Zhang, H. Lin, S. Lin, J. Wu, B. Jia, Y. Kivshar. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett., 20, 6351-6356(2020).

    [29] Y. Tang, Y. Liang, J. Yao, M. K. Chen, S. Lin, Z. Wang, J. Zhang, X. G. Huang, C. Yu, D. P. Tsai. Chiral bound states in the continuum in plasmonic metasurfaces. Laser Photon. Rev., 17, 2200597(2023).

    [30] K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, S. Noda. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photonics, 8, 406-411(2014).

    [31] F. Wu, J. Wu, Z. Guo, H. Jiang, Y. Sun, Y. Li, J. Ren, H. Chen. Giant enhancement of the Goos-Hänchen shift assisted by quasibound states in the continuum. Phys. Rev. Appl., 12, 014028(2019).

    [32] E. Melik-Gaykazyan, K. Koshelev, J.-H. Choi, S. S. Kruk, A. Bogdanov, H.-G. Park, Y. Kivshar. From Fano to quasi-BIC resonances in individual dielectric nanoantennas. Nano Lett., 21, 1765-1771(2021).

    [33] H. Shu, L. Chang, Y. Tao, B. Shen, W. Xie, M. Jin, A. Netherton, Z. Tao, X. Zhang, R. Chen, B. Bai, J. Qin, S. Yu, X. Wang, J. E. Bowers. Microcomb-driven silicon photonic systems. Nature, 605, 457-463(2022).

    [34] H. Zheng, H. U. Baranger. Persistent quantum beats and long-distance entanglement from waveguide-mediated interactions. Phys. Rev. Lett., 110, 113601(2013).

    [35] J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, O. Shapira. Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs. Phys. Rev. Lett., 109, 067401(2012).

    [36] Y. Song, N. Jiang, L. Liu, X. Hu, J. Zi. Cherenkov radiation from photonic bound states in the continuum: towards compact free-electron lasers. Phys. Rev. Appl., 10, 064026(2018).

    [37] C. Roques-Carmes, S. E. Kooi, Y. Yang, A. Massuda, P. D. Keathley, A. Zaidi, Y. Yang, J. D. Joannopoulos, K. K. Berggren, I. Kaminer, M. Soljačić. Towards integrated tunable all-silicon free-electron light sources. Nat. Commun., 10, 3176(2019).

    [38] J. F. Zhu, C. H. Du, F. H. Li, L. Y. Bao, P. K. Liu. Free-electron-driven multi-frequency terahertz radiation on a super-grating structure. IEEE Access, 7, 181184-181190(2019).

    [39] A. E. Miroshnichenko, S. Flach, Y. S. Kivshar. Fano resonances in nanoscale structures. Rev. Mod. Phys., 82, 2257-2298(2010).

    [40] K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, Y. Kivshar. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett., 121, 193903(2018).

    [41] A. Szczepkowicz, L. Schächter, R. J. England. Frequency-domain calculation of Smith–Purcell radiation for metallic and dielectric gratings. Appl. Opt., 59, 11146-11155(2020).

    [42] H. F. Ma, X. Shen, Q. Cheng, W. X. Jiang, T. J. Cui. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photon. Rev., 8, 146-151(2014).

    [43] X. Shen, T. J. Cui, D. Martin-Cano, F. J. Garcia-Vidal. Conformal surface plasmons propagating on ultrathin and flexible films. Proc. Natl. Acad. Sci. USA, 110, 40-45(2012).

    [44] K. Sun, H. Wei, W. Chen, Y. Chen, Y. Cai, C.-W. Qiu, Z. Han. Infinite-Q guided modes radiate in the continuum. Phys. Rev. B, 107, 115415(2023).

    [45] W. Wang, Y. K. Srivastava, T. C. Tan, Z. Wang, R. Singh. Brillouin zone folding driven bound states in the continuum. Nat. Commun., 14, 2811(2023).

    Zi-Wen Zhang, Chao-Hai Du, Yu-Lu Lei, Juan-Feng Zhu, Pu-Kun Liu, "Broadband infinite-Q plasmons enable intense Smith–Purcell radiation," Photonics Res. 11, 1945 (2023)
    Download Citation