• Chinese Optics Letters
  • Vol. 21, Issue 2, 023601 (2023)
Fan Yang1, Sensong An2, Mikhail Y. Shalaginov1, Hualiang Zhang2, Juejun Hu1、3、*, and Tian Gu1、3、**
Author Affiliations
  • 1Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
  • 2Department of Electrical & Computer Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA
  • 3Materials Research Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
  • show less
    DOI: 10.3788/COL202321.023601 Cite this Article Set citation alerts
    Fan Yang, Sensong An, Mikhail Y. Shalaginov, Hualiang Zhang, Juejun Hu, Tian Gu. Understanding wide field-of-view flat lenses: an analytical solution [Invited][J]. Chinese Optics Letters, 2023, 21(2): 023601 Copy Citation Text show less
    References

    [1] W. Liu, Z. Li, H. Cheng, C. Tang, J. Li, S. Zhang, S. Chen, J. Tian. Metasurface enabled wide-angle Fourier lens. Adv. Mater., 30, 1706368(2018).

    [2] Z. H. Jiang, L. Lin, D. Ma, S. Yun, D. H. Werner, Z. Liu, T. S. Mayer. Broadband and wide field-of-view plasmonic metasurface-enabled waveplates. Sci. Rep., 4, 7511(2014).

    [3] G.-Y. Lee, J.-Y. Hong, S. H. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, B. Lee. Metasurface eyepiece for augmented reality. Nat. Commun., 9, 4562(2018).

    [4] Y. Guo, X. Ma, M. Pu, X. Li, Z. Zhao, X. Luo. High-efficiency and wide-angle beam steering based on catenary optical fields in ultrathin metalens. Adv. Opt. Mater., 6, 1800592(2018).

    [5] B. Groever, W. T. Chen, F. Capasso. Meta-lens doublet in the visible region. Nano Lett., 17, 4902(2017).

    [6] A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, A. Faraon. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun., 7, 13682(2016).

    [7] D. Tang, L. Chen, J. Liu, X. Zhang. Achromatic metasurface doublet with a wide incident angle for light focusing. Opt. Express, 28, 12209(2020).

    [8] Z. Li, C. Wang, Y. Wang, X. Lu, Y. Guo, X. Li, X. Ma, M. Pu, X. Luo. Super-oscillatory metasurface doublet for sub-diffraction focusing with a large incident angle. Opt. Express, 29, 9991(2021).

    [9] Z. Huang, M. Qin, X. Guo, C. Yang, S. Li. Achromatic and wide-field metalens in the visible region. Opt. Express, 29, 13542(2021).

    [10] Y. Liu, Q.-Y. Yu, Z.-M. Chen, H.-Y. Qiu, R. Chen, S.-J. Jiang, X.-T. He, F.-L. Zhao, J.-W. Dong. Meta-objective with sub-micrometer resolution for microendoscopes. Photonics Res., 9, 106(2021).

    [11] D. A. Buralli, G. M. Morris. Design of a wide field diffractive landscape lens. Appl. Opt., 28, 3950(1989).

    [12] M. Y. Shalaginov, S. An, F. Yang, P. Su, D. Lyzwa, A. Agarwal, H. Zhang, J. Hu, T. Gu. A single-layer panoramic metalens with >170° diffraction-limited field of view(2019).

    [13] J. Engelberg, C. Zhou, N. Mazurski, J. Bar-David, A. Kristensen, U. Levy. Near-IR wide-field-of-view Huygens metalens for outdoor imaging applications. Nanophotonics, 9, 361(2020).

    [14] A. Martins, K. Li, J. Li, H. Liang, D. Conteduca, B.-H. V. Borges, T. F. Krauss, E. R. Martins. On metalenses with arbitrarily wide field of view. ACS Photonics, 7, 2073(2020).

    [15] F. Zhang, M. Pu, X. Li, X. Ma, Y. Guo, P. Gao, H. Yu, M. Gu, X. Luo. Extreme-angle silicon infrared optics enabled by streamlined surfaces. Adv. Mater., 33, 2008157(2021).

    [16] C.-Y. Fan, C.-P. Lin, G.-D. J. Su. Ultrawide-angle and high-efficiency metalens in hexagonal arrangement. Sci. Rep., 10, 15677(2020).

    [17] A. Kalvach, Z. Szabó. Aberration-free flat lens design for a wide range of incident angles. J. Opt. Soc. Am. B, 33, A66(2016).

    [18] T. Grulois, G. Druart, N. Guérineau, A. Crastes, H. Sauer, P. Chavel. Extra-thin infrared camera for low-cost surveillance applications. Opt. Lett., 39, 3169(2014).

    [19] M. Pu, X. Li, Y. Guo, X. Ma, X. Luo. Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing. Opt. Express, 25, 31471(2017).

    [20] C. Chen, P. Chen, J. Xi, W. Huang, K. Li, L. Liang, F. Shi, J. Shi. On-chip monolithic wide-angle field-of-view metalens based on quadratic phase profile. AIP Adv., 10, 115213(2020).

    [21] W.-P. Zhang, F. Liang, Y.-R. Su, K. Liu, M.-J. Tang, L. Li, Z.-W. Xie, W.-M. Liu. Numerical simulation research of wide-angle beam steering based on catenary shaped ultrathin metalens. Opt. Commun., 474, 126085(2020).

    [22] Y. Liu, J. Zhang, X. L. Roux, E. Cassan, D. Marris-Morini, L. Vivien, C. Alonso-Ramos, D. Melati. Broadband behavior of quadratic metalenses with a wide field of view(2022).

    [23] M. Y. Shalaginov, S. An, F. Yang, P. Su, D. Lyzwa, A. M. Agarwal, H. Zhang, J. Hu, T. Gu. Single-element diffraction-limited fisheye metalens. Nano Lett., 20, 7429(2020).

    [24] P. Wang, N. Mohammad, R. Menon. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing. Sci. Rep., 6, 21545(2016).

    [25] P. Wang, J. A. Dominguez-Caballero, D. J. Friedman, R. Menon. A new class of multi-bandgap high-efficiency photovoltaics enabled by broadband diffractive optics. Prog. Photovoltaics Res. Appl., 23, 1073(2015).

    [26] G. Kim, J. A. Domínguez-Caballero, R. Menon. Design and analysis of multi-wavelength diffractive optics. Opt. Express, 20, 2814(2012).

    [27] P. Wang, R. Menon. Optical microlithography on oblique and multiplane surfaces using diffractive phase masks. J. Micro/Nanolithogr., 14, 023507(2015).

    [28] P. Wang, R. Menon. Computational spectrometer based on a broadband diffractive optic. Opt. Express, 22, 14575(2014).

    [29] M. Born, E. Wolf. Principle of Optics(1991).

    [30] S. An, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, M. Kang. Deep learning modeling approach for metasurfaces with high degrees of freedom. Opt. Express, 28, 31932(2020).

    [31] L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nat. Commun., 9, 1481(2018).

    [32] S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine. A deep learning approach for objective-driven all-dielectric metasurface design. ACS Photonics, 6, 3196(2019).

    [33] M. Y. Shalaginov, S. An, Y. Zhang, F. Yang, P. Su, V. Liberman, J. B. Chou, C. M. Roberts, M. Kang, C. Rios. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat. Commun., 12, 1225(2021).

    [34] F. Yang, S. An, M. Y. Shalaginov, H. Zhang, C. Rivero-Baleine, J. Hu, T. Gu. Design of broadband and wide-field-of-view metalenses. Opt. Lett., 46, 5735(2021).

    Data from CrossRef

    [1] Fan Yang, Hung-I Lin, Peng Chen, Juejun Hu, Tian Gu. Monocular depth sensing using metalens. Nanophotonics, 0(2023).

    Fan Yang, Sensong An, Mikhail Y. Shalaginov, Hualiang Zhang, Juejun Hu, Tian Gu. Understanding wide field-of-view flat lenses: an analytical solution [Invited][J]. Chinese Optics Letters, 2023, 21(2): 023601
    Download Citation