• Chinese Journal of Lasers
  • Vol. 50, Issue 21, 2107105 (2023)
Lei Wang1, Lin Li1, Yongwen Zhao1, Dinglong Ma1, Ying Gu2、**, and Pu Wang1、*
Author Affiliations
  • 1Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
  • 2Department of Laser Medicine, the First Medical Center, PLA General Hospital, Beijing 100853, China
  • show less
    DOI: 10.3788/CJL230708 Cite this Article Set citation alerts
    Lei Wang, Lin Li, Yongwen Zhao, Dinglong Ma, Ying Gu, Pu Wang. Laser-Generated Ultrasound Technology and Its Application[J]. Chinese Journal of Lasers, 2023, 50(21): 2107105 Copy Citation Text show less
    References

    [1] Leighton T G. What is ultrasound?[J]. Progress in Biophysics and Molecular Biology, 93, 3-83(2007).

    [2] Lu J Y, Zou H H, Greenleaf J F. Biomedical ultrasound beam forming[J]. Ultrasound in Medicine & Biology, 20, 403-428(1994).

    [3] Kolios M. Biomedical ultrasound imaging from 1 to 1000 MHz[J]. Canadian Acoustics, 37, 35-43(2009).

    [4] Zheng H R, Mukdadi O, Shandas R. Theoretical predictions of harmonic generation from submicron ultrasound contrast agents for nonlinear biomedical ultrasound imaging[J]. Physics in Medicine and Biology, 51, 557-573(2006).

    [5] Wang L, Lei P, Wen X et al. Tapered fiber-based intravascular photoacoustic endoscopy for high-resolution and deep-penetration imaging of lipid-rich plaque[J]. Optics Express, 27, 12832-12840(2019).

    [6] Rousseau G, Gauthier B, Blouin A et al. Non-contact biomedical photoacoustic and ultrasound imaging[J]. Journal of Biomedical Optics, 17, 061217(2012).

    [7] Carovac A, Smajlovic F, Junuzovic D. Application of ultrasound in medicine[J]. Acta Informatica Medica, 19, 168-171(2011).

    [8] Barnett S B, Ter Haar G R, Ziskin M C et al. International recommendations and guidelines for the safe use of diagnostic ultrasound in medicine[J]. Ultrasound in Medicine & Biology, 26, 355-366(2000).

    [9] Foley J L, Vaezy S, Crum L A. Applications of high-intensity focused ultrasound in medicine: spotlight on neurological applications[J]. Applied Acoustics, 68, 245-259(2007).

    [10] Abdullah A, Shahini M, Pak A. An approach to design a high power piezoelectric ultrasonic transducer[J]. Journal of Electroceramics, 22, 369-382(2009).

    [11] Jung J, Lee W, Kang W et al. Review of piezoelectric micromachined ultrasonic transducers and their applications[J]. Journal of Micromechanics and Microengineering, 27, 113001(2017).

    [12] Chen X Y, Lam K H, Chen R M et al. Acoustic levitation and manipulation by a high-frequency focused ring ultrasonic transducer[J]. Applied Physics Letters, 114, 054103(2019).

    [13] Chen D D, Hou C X, Fei C L et al. An optimization design strategy of 1-3 piezocomposite ultrasonic transducer for imaging applications[J]. Materials Today Communications, 24, 100991(2020).

    [14] Lee W, Roh Y. Ultrasonic transducers for medical diagnostic imaging[J]. Biomedical Engineering Letters, 7, 91-97(2017).

    [15] Azhari H[M]. Basics of biomedical ultrasound for engineers(2010).

    [16] Cobbold R S C[M]. Foundations of biomedical ultrasound(2006).

    [17] Suetens P[M]. Fundamentals of medical imaging(2017).

    [18] Chen Z Y, Wu Y, Yang Y et al. Multilayered carbon nanotube yarn based optoacoustic transducer with high energy conversion efficiency for ultrasound application[J]. Nano Energy, 46, 314-321(2018).

    [19] Wang X B, Yan F, Liu X F et al. Enhanced drug delivery using sonoactivatable liposomes with membrane-embedded porphyrins[J]. Journal of Controlled Release, 286, 358-368(2018).

    [20] Zhu P C, Peng H M, Mao L L et al. Piezoelectric single crystal ultrasonic transducer for endoscopic drug release in gastric mucosa[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 68, 952-960(2021).

    [21] Ma T, Yu M Y, Li J W et al. Multi-frequency intravascular ultrasound (IVUS) imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 62, 97-107(2015).

    [22] Yoon S, Kim M G, Williams J A et al. Dual-element needle transducer for intravascular ultrasound imaging[J]. Journal of Medical Imaging, 2, 027001(2015).

    [23] Munding C E, Chérin E, Alves N et al. 30/80 MHz bidirectional dual-frequency IVUS feasibility evaluated in vivo and for stent imaging[J]. Ultrasound in Medicine & Biology, 46, 2104-2112(2020).

    [24] Qiu W B, Chen Y, Wong C M et al. A novel dual-frequency imaging method for intravascular ultrasound applications[J]. Ultrasonics, 57, 31-35(2015).

    [25] Su M, Zhang Z Q, Hong J H et al. Cable-shared dual-frequency catheter for intravascular ultrasound[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 66, 849-856(2019).

    [26] Munding C E, Chérin E, Jourard I et al. Development of a 3 French dual-frequency intravascular ultrasound catheter[J]. Ultrasound in Medicine & Biology, 44, 251-266(2018).

    [27] Toda M, Thompson M. Detailed investigations of polymer/metal multilayer matching layer and backing absorber structures for wideband ultrasonic transducers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59, 231-242(2012).

    [28] Nissen S E, Yock P. Intravascular ultrasound: novel pathophysiological insights and current clinical applications[J]. Circulation, 103, 604-616(2001).

    [29] Opieliński K J, Gudra T. Influence of the thickness of multilayer matching systems on the transfer function of ultrasonic airborne transducer[J]. Ultrasonics, 40, 465-469(2002).

    [30] Li J P, Ma Y Q, Zhang T et al. Recent advancements in ultrasound transducer: from material strategies to biomedical applications[J]. BME Frontiers, 2022, 9764501(2022).

    [31] McDonald F A, Wetsel G C. Generalized theory of the photoacoustic effect[J]. Journal of Applied Physics, 49, 2313-2322(1978).

    [32] Xu M H, Wang L V. Photoacoustic imaging in biomedicine[J]. Review of Scientific Instruments, 77, 041101(2006).

    [33] Wang L V. Prospects of photoacoustic tomography[J]. Medical Physics, 35, 5758-5767(2008).

    [34] Beard P. Biomedical photoacoustic imaging[J]. Interface Focus, 1, 602-631(2011).

    [35] Rosencwaig A, Gersho A. Theory of the photoacoustic effect with solids[J]. Journal of Applied Physics, 47, 64-69(1976).

    [36] Tam A C. Applications of photoacoustic sensing techniques[J]. Reviews of Modern Physics, 58, 381-431(1986).

    [37] Yao J J, Wang L V. Photoacoustic microscopy[J]. Laser & Photonics Reviews, 7, 758-778(2013).

    [38] Wen X E, Lei P, Huang S et al. High-fluence relay-based disposable photoacoustic-ultrasonic endoscopy for in vivo anatomical imaging of gastrointestinal tract[J]. Photonics Research, 11, 55-64(2022).

    [39] Wang Z Y, Yang F, Ma H G et al. Photoacoustic and ultrasound (PAUS) dermoscope with high sensitivity and penetration depth by using a bimorph transducer[J]. Journal of Biophotonics, 13, e202000145(2020).

    [40] Mu G, Zhang Z H, Shi Y J. Photoacoustic imaging technology in biomedical imaging[J]. Chinese Journal of Lasers, 49, 2007208(2022).

    [41] Wang R R, Cui D D, Shi Y J. Photosensitive AgBr@PLGA nanoprobes for near-infrared second region tumor-specific photoacoustic imaging[J]. Chinese Journal of Lasers, 49, 2007204(2022).

    [42] Fu W B, Liang Y Z, Zhong X X et al. Optical fiber photoacoustic blood oxygen saturation measurement and functional imaging[J]. Acta Optica Sinica, 42, 2017001(2022).

    [43] Zhao P Y, Chen Z J. Progress of multimodal photoacoustic imaging and its application in ophthalmology[J]. Laser & Optoelectronics Progress, 59, 0617014(2022).

    [44] Li C H. Creating the sound of life by light: a discussion about photoacoustic imaging[J]. Laser & Optoelectronics Progress, 59, 0617005(2022).

    [45] He Y, Liao T Y, Wu J W et al. Design of photoacoustic microscope based on transparent ultrasonic transducer[J]. Chinese Journal of Lasers, 49, 0307001(2022).

    [46] Jin X, Wang X K, Xiong K D et al. High-resolution and extended-depth-of-field photoacoustic endomicroscopy by scanning-domain synthesis of optical beams[J]. Optics Express, 27, 19369-19381(2019).

    [47] Kim J, Kim H, Chang W Y et al. Candle-soot carbon nanoparticles in photoacoustics: advantages and challenges for laser ultrasound transmitters[J]. IEEE Nanotechnology Magazine, 13, 13-28(2019).

    [48] Noimark S, Colchester R J, Poduval R K et al. Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging[J]. Advanced Functional Materials, 28, 1704919(2018).

    [49] Ansari R, Zhang E Z, Desjardins A E et al. All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy[J]. Light: Science & Applications, 7, 75(2018).

    [50] Alles E J, Noimark S, Maneas E et al. Video-rate all-optical ultrasound imaging[J]. Biomedical Optics Express, 9, 3481-3494(2018).

    [51] Guggenheim J A, Li J, Allen T J et al. Ultrasensitive plano-concave optical microresonators for ultrasound sensing[J]. Nature Photonics, 11, 714-719(2017).

    [52] Li G Y, Guo Z D, Chen S L. Miniature all-optical probe for large synthetic aperture photoacoustic-ultrasound imaging[J]. Optics Express, 25, 25023-25035(2017).

    [53] Hsieh B Y, Chen S L, Ling T et al. All-optical scanhead for ultrasound and photoacoustic imaging-imaging mode switching by dichroic filtering[J]. Photoacoustics, 2, 39-46(2014).

    [54] Wang L, Zhao Y W, Zheng B et al. Ultrawide-bandwidth high-resolution all-optical intravascular ultrasound using miniaturized photoacoustic transducer[J]. Science Advances, 9, eadg8600(2023).

    [55] Kim D, Ye M, Grigoropoulos C P. Pulsed laser-induced ablation of absorbing liquids and acoustic-transient generation[J]. Applied Physics A, 67, 169-181(1998).

    [56] Wang L V. Tutorial on photoacoustic microscopy and computed tomography[J]. IEEE Journal of Selected Topics in Quantum Electronics, 14, 171-179(2008).

    [57] Wu N, Tian Y, Zou X T et al. High-efficiency optical ultrasound generation using one-pot synthesized polydimethylsiloxane-gold nanoparticle nanocomposite[J]. Journal of the Optical Society of America B, 29, 2016-2020(2012).

    [58] Lee T, Baac H W, Ok J G et al. Polymer-nanomaterial composites for optoacoustic conversion[M]. Li Q A. Functional organic and hybrid nanostructured materials, 519-546(2018).

    [59] Lee T, Baac H W, Li Q C et al. Efficient photoacoustic conversion in optical nanomaterials and composites[J]. Advanced Optical Materials, 6, 1800491(2018).

    [60] Paltauf G, Dyer P E. Photomechanical processes and effects in ablation[J]. Chemical Reviews, 103, 487-518(2003).

    [61] Won Baac H, Ok J G, Park H J et al. Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation[J]. Applied Physics Letters, 97, 234104(2010).

    [62] Biagi E, Margheri F, Menichelli D. Efficient laser-ultrasound generation by using heavily absorbing films as targets[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 48, 1669-1680(2001).

    [63] Hou Y, Kim J S, Ashkenazi S et al. Broadband all-optical ultrasound transducers[J]. Applied Physics Letters, 91, 073507(2007).

    [64] Wang L V, Wu H I[M]. Biomedical Optics: Principles and Imaging(2009).

    [65] Shi Y J, Xing D. Study on photoacoustic effect in nanoscale and photoacoustic conversion mechanism of nanoprobes[J]. Chinese Journal of Lasers, 45, 0207026(2018).

    [66] Seeger M, Soliman D, Aguirre J et al. Pushing the boundaries of optoacoustic microscopy by total impulse response characterization[J]. Nature Communications, 11, 2910(2020).

    [67] Hou Y, Kim J S, Ashkenazi S et al. Optical generation of high frequency ultrasound using two-dimensional gold nanostructure[J]. Applied Physics Letters, 89, 093901(2006).

    [68] Zou X T, Wu N, Tian Y et al. Broadband miniature fiber optic ultrasound generator[J]. Optics Express, 22, 18119-18127(2014).

    [69] Chen Y S, Zhao Y, Yoon S J et al. Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window[J]. Nature Nanotechnology, 14, 465-472(2019).

    [70] Kang S, Yoon Y, Kim J et al. Thermoelastic response of thin metal films and their adjacent materials[J]. Applied Physics Letters, 102, 021908(2013).

    [71] Lee T, Guo L J. Highly efficient photoacoustic conversion by facilitated heat transfer in ultrathin metal film sandwiched by polymer layers[J]. Advanced Optical Materials, 5, 1600421(2017).

    [72] Du X Y, Li J P, Niu G D et al. Lead halide perovskite for efficient optoacoustic conversion and application toward high-resolution ultrasound imaging[J]. Nature Communications, 12, 3348(2021).

    [73] Colchester R J, Alles E J, Desjardins A E. A directional fibre optic ultrasound transmitter based on a reduced graphene oxide and polydimethylsiloxane composite[J]. Applied Physics Letters, 114, 113505(2019).

    [74] Buma T, Spisar M, O’Donnell M. High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film[J]. Applied Physics Letters, 79, 548-550(2001).

    [75] Li Y M, Jiang Y, Lan L et al. Optically-generated focused ultrasound for noninvasive brain stimulation with ultrahigh precision[J]. Light: Science & Applications, 11, 321(2022).

    [76] Chang W Y, Zhang X A, Kim J et al. Evaluation of photoacoustic transduction efficiency of candle soot nanocomposite transmitters[J]. IEEE Transactions on Nanotechnology, 17, 985-993(2018).

    [77] Zhou J, Jokerst J V. Miniature fiber-optic high-intensity focused ultrasound device using a candle soot nanoparticles-polydimethylsiloxane composites-coated photoacoustic lens: a review[J]. Photoacoustics, 20, 100211(2020).

    [78] Chang W Y, Huang W B, Kim J et al. Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers[J]. Applied Physics Letters, 107, 161903(2015).

    [79] Silva A D, Henriques C A, Malva D V et al. Photoacoustic generation of intense and broadband ultrasound pulses with functionalized carbon nanotubes[J]. Nanoscale, 12, 20831-20839(2020).

    [80] Noimark S, Colchester R J, Blackburn B J et al. Carbon-nanotube-PDMS composite coatings on optical fibers for all-optical ultrasound imaging[J]. Advanced Functional Materials, 26, 8390-8396(2016).

    [81] Baac H W, Ok J G, Lee T et al. Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation[J]. Nanoscale, 7, 14460-14468(2015).

    [82] Li J P, Xu J B, Liu X L et al. A novel CNTs array-PDMS composite with anisotropic thermal conductivity for optoacoustic transducer applications[J]. Composites Part B: Engineering, 196, 108073(2020).

    [83] Finlay M C, Mosse C A, Colchester R J et al. Through-needle all-optical ultrasound imaging in vivo: a preclinical swine study[J]. Light: Science & Applications, 6, e17103(2017).

    [84] Oser P, Jehn J, Kaiser M et al. Fiber-optic photoacoustic generator realized by inkjet-printing of CNT-PDMS composites on fiber end faces[J]. Macromolecular Materials and Engineering, 306, 2000563(2021).

    [85] Poduval R K, Noimark S, Colchester R J et al. Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite[J]. Applied Physics Letters, 110, 223701(2017).

    [86] Huang W B, Chang W Y, Kim J et al. A novel laser ultrasound transducer using candle soot carbon nanoparticles[J]. IEEE Transactions on Nanotechnology, 15, 395-401(2016).

    [87] Bodian S, Colchester R J, Macdonald T J et al. CuInS2 quantum dot and polydimethylsiloxane nanocomposites for all-optical ultrasound and photoacoustic imaging[J]. Advanced Materials Interfaces, 8, 2100518(2021).

    [88] La Cavera S, Pérez-Cota F, Smith R J et al. Phonon imaging in 3D with a fibre probe[J]. Light: Science & Applications, 10, 91(2021).

    [89] Chang W Y, Zhang X A, Kim J et al. Evaluation of photoacoustic transduction efficiency of candle soot nanocomposite transmitters[J]. IEEE Transactions on Nanotechnology, 17, 985-993(2018).

    [90] Faraz M, Abbasi M A, Sang P et al. Stretchable and robust candle-soot nanoparticle-polydimethylsiloxane composite films for laser-ultrasound transmitters[J]. Micromachines, 11, 631(2020).

    [91] Mattiat O E[M]. Ultrasonic transducer materials(2013).

    [92] Zhou Q F, Cannata J, Shung K K. Design and modeling of inversion layer ultrasonic transducers using LiNbO3 single crystal[J]. Ultrasonics, 44, e607-e611(2006).

    [93] Zhou Q F, Lau S, Wu D W et al. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications[J]. Progress in Materials Science, 56, 139-174(2011).

    [94] Zhou Q F, Lam K H, Zheng H R et al. Piezoelectric single crystal ultrasonic transducers for biomedical applications[J]. Progress in Materials Science, 66, 87-111(2014).

    [95] Callens D, Bruneel C, Assaad J. Matching ultrasonic transducer using two matching layers where one of them is glue[J]. NDT & E International, 37, 591-596(2004).

    [96] Ma X W, Cao W W. Single-crystal high-frequency intravascular ultrasound transducer with 40-μm axial resolution[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67, 810-816(2020).

    [97] Bian J C, Wang Y, Liu Z J et al. Ultra-wideband underwater acoustic transducer with a gradient impedance matching layer[J]. Applied Acoustics, 175, 107789(2021).

    [98] Inoue T, Ohta M, Takahashi S. Design of ultrasonic transducers with multiple acoustic matching layers for medical application[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 34, 8-16(1987).

    [99] Hadimioglu B, La Comb L J, Jr, Wright D R et al. High efficiency, multiple layer ZnO acoustic transducers at millimeter-wave frequencies[J]. Applied Physics Letters, 50, 1642-1644(1987).

    [100] Grewe M G, Gururaja T R, Shrout T R et al. Acoustic properties of particle/polymer composites for ultrasonic transducer backing applications[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 37, 506-514(1990).

    [101] Nguyen N T, Lethiecq M, Karlsson B et al. Highly attenuative rubber modified epoxy for ultrasonic transducer backing applications[J]. Ultrasonics, 34, 669-675(1996).

    [102] Hou C X, Fei C L, Li Z X et al. Optimized backing layers design for high frequency broad bandwidth ultrasonic transducer[J]. IEEE Transactions on Biomedical Engineering, 69, 475-481(2022).

    [103] Toda M, Thompson M. Novel multi-layer polymer-metal structures for use in ultrasonic transducer impedance matching and backing absorber applications[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 57, 2818-2827(2010).

    [104] Sayers C M, Tait C E. Ultrasonic properties of transducer backings[J]. Ultrasonics, 22, 57-60(1984).

    [105] Kuscer D, Bustillo J, Bakarič T et al. Acoustic properties of porous lead zirconate titanate backing for ultrasonic transducers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67, 1656-1666(2020).

    [106] El-Tantawy F, Sung Y K. A novel ultrasonic transducer backing from porous epoxy resin-titanium-silane coupling agent and plasticizer composites[J]. Materials Letters, 58, 154-158(2004).

    [107] Fei C L, Yang Y H, Guo F F et al. PMN-PT single crystal ultrasonic transducer with half-concave geometric design for IVUS imaging[J]. IEEE Transactions on Bio-Medical Engineering, 65, 2087-2092(2018).

    [109] Baac H W, Ok J G, Maxwell A et al. Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy[J]. Scientific Reports, 2, 989(2012).

    [110] Menz M D, Ye P, Firouzi K et al. Radiation force as a physical mechanism for ultrasonic neurostimulation of the ex vivo retina[J]. The Journal of Neuroscience, 39, 6251-6264(2019).

    [111] Cheng Z Y, Wang C M, Wei B W et al. High resolution ultrasonic neural modulation observed via in vivo two-photon calcium imaging[J]. Brain Stimulation, 15, 190-196(2022).

    [112] Lee W, Kim H C, Jung Y et al. Transcranial focused ultrasound stimulation of human primary visual cortex[J]. Scientific Reports, 6, 34026(2016).

    [113] Yu K, Liu C, Niu X D et al. Transcranial focused ultrasound neuromodulation of voluntary movement-related cortical activity in humans[J]. IEEE Transactions on Bio-Medical Engineering, 68, 1923-1931(2021).

    [114] Kim S, Jo Y, Kook G et al. Transcranial focused ultrasound stimulation with high spatial resolution[J]. Brain Stimulation, 14, 290-300(2021).

    [115] Omar M, Gateau J, Ntziachristos V. Raster-scan optoacoustic mesoscopy in the 25-125 MHz range[J]. Optics Letters, 38, 2472-2474(2013).

    [116] Conjusteau A, Ermilov S A, Su R et al. Measurement of the spectral directivity of optoacoustic and ultrasonic transducers with a laser ultrasonic source[J]. Review of Scientific Instruments, 80, 093708(2009).

    [117] Ocheltree K B, Frizzel L A. Sound field calculation for rectangular sources[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 36, 242-248(1989).

    [118] Yamashita K, Katata H, Okuyama M et al. Arrayed ultrasonic microsensors with high directivity for in-air use using PZT thin film on silicon diaphragms[J]. Sensors and Actuators A: Physical, 97/98, 302-307(2002).

    [119] Colchester R J, Little C, Dwyer G et al. All-optical rotational ultrasound imaging[J]. Scientific Reports, 9, 5576(2019).

    [120] Kim J, Chang W Y, Lindsey B D et al. Laser-generated-focused ultrasound transducers for microbubble-mediated, dual-excitation sonothrombolysis[C](2016).

    [121] Treeby B E, Cox B T. K-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields[J]. Journal of Biomedical Optics, 15, 021314(2010).

    [122] Treeby B E, Jaros J, Rendell A P et al. Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method[J]. The Journal of the Acoustical Society of America, 131, 4324-4336(2012).

    [123] Treeby B E, Cox B T. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian[J]. The Journal of the Acoustical Society of America, 127, 2741-2748(2010).

    [124] Lan L, Xia Y, Li R et al. A fiber optoacoustic guide with augmented reality for precision breast-conserving surgery[J]. Light: Science & Applications, 7, 2(2018).

    [125] Mehić E, Xu J M, Caler C J et al. Increased anatomical specificity of neuromodulation via modulated focused ultrasound[J]. PLoS One, 9, e86939(2014).

    [126] Choi T, Bae S, Suh M et al. A soft housing needle ultrasonic transducer for focal stimulation to small animal brain[J]. Annals of Biomedical Engineering, 48, 1157-1168(2020).

    [127] Arcot Desai S, Gutekunst C A, Potter S M et al. Deep brain stimulation macroelectrodes compared to multiple microelectrodes in rat hippocampus[J]. Frontiers in Neuroengineering, 7, 16(2014).

    [128] Rosin B, Slovik M, Mitelman R et al. Closed-loop deep brain stimulation is superior in ameliorating Parkinsonism[J]. Neuron, 72, 370-384(2011).

    [129] Krishna V, Sammartino F, Rezai A. A review of the current therapies, challenges, and future directions of transcranial focused ultrasound technology: advances in diagnosis and treatment[J]. JAMA Neurology, 75, 246-254(2018).

    [130] Roth G A, Mensah G A, Johnson C O et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study[J]. Journal of the American College of Cardiology, 76, 2982-3021(2020).

    [131] Virmani R, Burke A P, Farb A et al. Pathology of the vulnerable plaque[J]. Journal of the American College of Cardiology, 47, C13-C18(2006).

    [132] Bode M F, Jaffer F A. IVUS and OCT: current state-of-the-art in intravascular coronary imaging[J]. Current Cardiovascular Imaging Reports, 12, 29(2019).

    [133] Ono M, Kawashima H, Hara H et al. Advances in IVUS/OCT and future clinical perspective of novel hybrid catheter system in coronary imaging[J]. Frontiers in Cardiovascular Medicine, 7, 119(2020).

    [134] Ng A, Swanevelder J. Resolution in ultrasound imaging[J]. Continuing Education in Anaesthesia Critical Care & Pain, 11, 186-192(2011).

    [135] Foster F S, Pavlin C J, Harasiewicz K A et al. Advances in ultrasound biomicroscopy[J]. Ultrasound in Medicine & Biology, 26, 1-27(2000).

    [136] Peng C, Wu H Y, Kim S et al. Recent advances in transducers for intravascular ultrasound (IVUS) imaging[J]. Sensors, 21, 3540(2021).

    [137] Mintz G S, Nissen S E, Anderson W D et al. American college of cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS). A report of the American college of cardiology task force on clinical expert consensus documents developed in collaboration with the European society of cardiology endorsed by the society of cardiac angiography and interventions[J]. European Journal of Echocardiography, 2, 299-313(2001).

    [138] Nguyen P, Seto A. Contemporary practices using intravascular imaging guidance with IVUS or OCT to optimize percutaneous coronary intervention[J]. Expert Review of Cardiovascular Therapy, 18, 103-115(2020).

    [139] Beyer R T[M]. Nonlinear acoustics: acoustical society of America(1997).

    [140] Hamilton M F, Blackstock D T[M]. Nonlinear acoustics(1998).

    [141] Coussios C C, Roy R A. Applications of acoustics and cavitation to noninvasive therapy and drug delivery[J]. Annual Review of Fluid Mechanics, 40, 395-420(2008).

    [142] Herbert E, Balibar S, Caupin F. Cavitation pressure in water[J]. Physical Review E, 74, 041603(2006).

    [143] Filonenko E A, Khokhlova V A. Effect of acoustic nonlinearity on heating of biological tissue by high-intensity focused ultrasound[J]. Acoustical Physics, 47, 468-475(2001).

    [144] Mitragotri S. Healing sound: the use of ultrasound in drug delivery and other therapeutic applications[J]. Nature Reviews Drug Discovery, 4, 255-260(2005).

    [145] Choi J J, Selert K, Gao Z M et al. Noninvasive and localized blood-brain barrier disruption using focused ultrasound can be achieved at short pulse lengths and low pulse repetition frequencies[J]. Journal of Cerebral Blood Flow & Metabolism, 31, 725-737(2011).

    [146] Krasovitski B, Frenkel V, Shoham S et al. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects[J]. Proceedings of the National Academy of Sciences of the United States of America, 108, 3258-3263(2011).

    [147] Tufail Y, Yoshihiro A, Pati S et al. Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound[J]. Nature Protocols, 6, 1453-1470(2011).

    [148] Yoo S S, Bystritsky A, Lee J H et al. Focused ultrasound modulates region-specific brain activity[J]. NeuroImage, 56, 1267-1275(2011).

    [149] Goldenstedt C, Birer A, Cathignol D et al. Blood clot disruption in vitro using shockwaves delivered by an extracorporeal generator after pre-exposure to lytic agent[J]. Ultrasound in Medicine & Biology, 35, 985-990(2009).

    [150] Zhou Y F. High intensity focused ultrasound in clinical tumor ablation[J]. World Journal of Clinical Oncology, 2, 8-27(2011).

    [151] Fisher B, Anderson S, Bryant J et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer[J]. The New England Journal of Medicine, 347, 1233-1241(2002).

    [152] van Dongen J A, Voogd A C, Fentiman I S et al. Long-term results of a randomized trial comparing breast-conserving therapy with mastectomy: European organization for research and treatment of cancer 10801 trial[J]. JNCI: Journal of the National Cancer Institute, 92, 1143-1150(2000).

    [153] Veronesi U, Cascinelli N, Mariani L et al. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer[J]. The New England Journal of Medicine, 347, 1227-1232(2002).

    [154] Siegel R L, Miller K D, Jemal A. Cancer statistics, 2015[J]. CA: A Cancer Journal for Clinicians, 65, 5-29(2015).

    [155] Atkins J, Al Mushawah F, Appleton C M et al. Positive margin rates following breast-conserving surgery for stage I-III breast cancer: palpable versus nonpalpable tumors[J]. Journal of Surgical Research, 177, 109-115(2012).

    [156] Balch G C, Mithani S K, Simpson J F et al. Accuracy of intraoperative gross examination of surgical margin status in women undergoing partial mastectomy for breast malignancy[J]. The American Surgeon, 71, 22-28(2005).

    [157] Mitragotri S. Current status and future prospects of needle-free liquid jet injectors[J]. Nature Reviews Drug Discovery, 5, 543-548(2006).

    [158] Prausnitz M R, Langer R. Transdermal drug delivery[J]. Nature Biotechnology, 26, 1261-1268(2008).

    [159] Torrisi F, Hasan T, Wu W P et al. Inkjet-printed graphene electronics[J]. ACS Nano, 6, 2992-3006(2012).

    [160] Perçin G, Lundgren T S, Khuri-Yakub B T. Controlled ink-jet printing and deposition of organic polymers and solid particles[J]. Applied Physics Letters, 73, 2375-2377(1998).

    [161] Han T H, Yoh J J. A laser based reusable microjet injector for transdermal drug delivery[J]. Journal of Applied Physics, 107, 103110(2010).

    [162] Fletcher D A, Palanker D V. Pulsed liquid microjet for microsurgery[J]. Applied Physics Letters, 78, 1933-1935(2001).

    [163] Chen P H, Chen W C, Chang S H. Bubble growth and ink ejection process of a thermal ink jet printhead[J]. International Journal of Mechanical Sciences, 39, 683-695(1997).

    [164] Lee T, Baac H W, Ok J G et al. Nozzle-free liquid microjetting via homogeneous bubble nucleation[J]. Physical Review Applied, 3, 044007(2015).

    Lei Wang, Lin Li, Yongwen Zhao, Dinglong Ma, Ying Gu, Pu Wang. Laser-Generated Ultrasound Technology and Its Application[J]. Chinese Journal of Lasers, 2023, 50(21): 2107105
    Download Citation