• Electronics Optics & Control
  • Vol. 29, Issue 6, 97 (2022)
ZHOU Ruimin1, XU Pengfei1, SI Wenjie2, ZHOU Zhiqing1, and GENG Zexun1、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1671-637x.2022.06.020 Cite this Article
    ZHOU Ruimin, XU Pengfei, SI Wenjie, ZHOU Zhiqing, GENG Zexun. Formation Control of Second-Order Multi-agent Systems with Improved Connectivity Preservation[J]. Electronics Optics & Control, 2022, 29(6): 97 Copy Citation Text show less
    References

    [4] MA C QZHANG J F.Necessary and sufficient conditions for consensusability of linear multi-agent systems[J].IEEE Transactions on Automatic Control201055(5):1263-1268.

    [5] LI Z KWEN G HDUAN Z Set al.Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs[J].IEEE Transactions on Automatic Control201560(4):1152-1157.

    [6] LI Z KREN WLIU X Det al.Distributed consensus of linear multi-agent systems with adaptive dynamic protocols[J].Automatica201349(7):1986-1995.

    [7] XIAO FWANG LCHEN Jet al.Finite-time formation control for multi-agent systems[J].Automatica200945(11):2605-2611.

    [8] DIMOS V DKOSTAS J K.A connection between formation infeasibility and velocity alignment in kinematic multi-agent systems[J].Automatica200844(10):2648-2654.

    [9] YU J LDONG X WLI Q Det al.Robust-guaranteed cost time-varying formation tracking for high-order multiagent systems with time-varying delays[J].IEEE Transactions on SystemsManand Cybernetics:Systems202050(4):1465-1475.

    [10] WANG J HXU Y LXU Yet al.Time-varying formation for high-order multi-agent systems with external disturbances by event-triggered integral sliding mode control[J].Applied Mathematics and Computation2019359:333-343.

    [11] XIE KCHEN CLEWIS F Let al.Adaptive compensation for nonlinear time-varying multiagent systems with actuator failures and unknown control directions[J].IEEE Transactions on Cybernetics201949(5):1780-1790.

    [12] YAN BWU C FSHI P.Formation consensus for discrete-time heterogeneous multi-agent systems with link failures and actuator/sensor faults[J].Journal of the Franklin Institute2019356(12):6547-6570.

    [13] SUNG J YBONG S P.Connectivity preservation andcollision avoidance in networked nonholonomic multi-robot formation systems:unified error transformation strategy[J].Automatica2019103:274-281.

    [14] DONG YHUANG J.Flocking with connectivity preservation of multiple double integrator systems subject to external disturbances by a distributed control law[J].Automatica201555:197-203.

    [15] PENG Z HWANG DLI T Set al.Output-feedback cooperative formation maneuvering of autonomous surface vehicles with connectivity preservation and collision avoidance[J].IEEE Transactions on Cybernetics2020 50(6):2527-2535.

    [16] MONDAL ABHOWMICK CBEHERA Let al.Trajectory tracking by multiple agents in formation with collision avoidance and connectivity assurance[J].IEEE Systems Journal201812(3):2449-2460.

    [17] MANSOUR KGOKHAN ADUSAN Set al.Trajectory tracking control of unicycle robots with collision avoidance and connectivity maintenance[J].Journal of Intelligent & Robotic Systems201996:331-343.

    [18] YU J LDONG X WLI Q Det al.Practical time-va-rying output formation tracking for high-order multi-agent systems with collision avoidanceobstacle dodging and connectivity maintenance[J].Journal of the Franklin Institute2019356(12):5898-5926.

    [19] SU S ZLIN Z L.Connectivity enhancing coordinated tracking control of multi-agent systems with a state-dependent jointly-connected dynamic interaction topology[J].Automatica2019101:431-438.

    CLP Journals

    [1] WENG Kai, REN Yan, GAO Wei. Distributed Cooperative Control of Multi-agent System with Unknown Inputs[J]. Electronics Optics & Control, 2023, 30(10): 13

    ZHOU Ruimin, XU Pengfei, SI Wenjie, ZHOU Zhiqing, GENG Zexun. Formation Control of Second-Order Multi-agent Systems with Improved Connectivity Preservation[J]. Electronics Optics & Control, 2022, 29(6): 97
    Download Citation