• Photonics Research
  • Vol. 10, Issue 9, 2215 (2022)
Harry Miyosi Silalahi1, Wei-Fan Chiang2, Yi-Hong Shih2, Wan-Yi Wei1, Jou-Yu Su1, and Chia-Yi Huang1、*
Author Affiliations
  • 1Department of Applied Physics, Tunghai University, Taichung 40704, China
  • 2Department of Photonics, Taiwan Cheng Kung University, Tainan 70101, China
  • show less
    DOI: 10.1364/PRJ.465746 Cite this Article Set citation alerts
    Harry Miyosi Silalahi, Wei-Fan Chiang, Yi-Hong Shih, Wan-Yi Wei, Jou-Yu Su, Chia-Yi Huang. Folding metamaterials with extremely strong electromagnetic resonance[J]. Photonics Research, 2022, 10(9): 2215 Copy Citation Text show less
    References

    [1] J. Zhang, S. Li, W. Le. Advances of terahertz technology in neuroscience: current status and a future perspective. iScience, 24, 103548(2021).

    [2] L. Sun, L. Zhao, R.-Y. Peng. Research progress in the effects of terahertz waves on biomacromolecules. Mil. Med. Res., 8, 28(2021).

    [3] Y. Ma, B. Dong, C. Lee. Progress of infrared guided-wave nanophotonic sensors and devices. Nano Converg., 7, 12(2020).

    [4] X. Liu, W. Liu, Z. Ren, Y. Ma, B. Dong, G. Zhou, C. Lee. Progress of optomechanical micro/nano sensors: a review. Int. J. Optomechatron., 15, 120-159(2021).

    [5] C. Xu, Z. Ren, J. Wei, C. Lee. Reconfigurable terahertz metamaterials: from fundamental principles to advanced 6G applications. iScience, 25, 103799(2022).

    [6] W. F. Chiang, H. M. Silalahi, Y. C. Chiang, M. C. Hsu, Y. S. Zhang, J. H. Liu, Y. Yu, C. R. Lee, C. Y. Huang. Continuously tunable intensity modulators with large switching contrasts using liquid crystal elastomer films that are deposited with terahertz metamaterials. Opt. Express, 28, 27676-27687(2020).

    [7] P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D.-L. Kwong, C. Lee. Dual band complementary metamaterial absorber in near infrared region. J. Appl. Phys., 115, 193109(2014).

    [8] P. Pitchappa, C. Pei Ho, Y. S. Lin, P. Kropelnicki, C. Y. Huang, N. Singh, C. Lee. Micro-electro-mechanically tunable metamaterial with enhanced electro-optic performance. Appl. Phys. Lett., 104, 151104(2014).

    [9] P. Pitchappa, A. Kumar, R. Singh, C. Lee, N. Wang. Terahertz MEMS metadevices. J. Micromech. Microeng., 31, 113001(2021).

    [10] A. Kumar, A. Solanki, M. Manjappa, S. Ramesh, Y. K. Srivastava, P. Agarwal, T. C. Sum, R. Singh. Excitons in 2D perovskites for ultrafast terahertz photonic devices. Sci. Adv., 6, eaax8821(2020).

    [11] H. M. Silalahi, Y. P. Chen, Y. H. Shih, Y. S. Chen, X. Y. Lin, J. H. Liu, C. Y. Huang. Floating terahertz metamaterials with extremely large refractive index sensitivities. Photon. Res., 9, 1970-1978(2021).

    [12] W. F. Chiang, S. X. Lin, Y. X. Lee, Y. H. Shih, J. H. Liu, H. M. Silalahi, C. R. Lee, C. Y. Huang. Effect of thicknesses of liquid crystal layers on shift of resonance frequencies of metamaterials. Coatings, 11, 578(2021).

    [13] K. Shih, P. Pitchappa, L. Jin, C.-H. Chen, R. Singh, C. Lee. Nanofluidic terahertz metasensor for sensing in aqueous environment. Appl. Phys. Lett., 113, 071105(2018).

    [14] Y.-S. Lin, Z. Xu. Reconfigurable metamaterials for optoelectronic applications. Int. J. Optomechatron., 14, 78-93(2020).

    [15] F. Lan, F. Luo, P. Mazumder, Z. Yang, L. Meng, Z. Bao, J. Zhou, Y. Zhang, S. Liang, Z. Shi, A. R. Khan, Z. Zhang, L. Wang, J. Yin, H. Zeng. Dual-band refractometric terahertz biosensing with intense wave-matter-overlap microfluidic channel. Biomed. Opt. Express, 10, 3789-3799(2019).

    [16] L. Liang, X. Hu, L. Wen, Y. Zhu, X. Yang, J. Zhou, Y. Zhang, I. E. Carranza, J. Grant, C. Jiang, D. R. S. Cumming, B. Li, Q. Chen. Unity integration of grating slot waveguide and microfluid for terahertz sensing. Laser Photon. Rev., 12, 1800078(2018).

    [17] K. Shih, P. Pitchappa, M. Manjappa, C. P. Ho, R. Singh, C. Lee. Microfluidic metamaterial sensor: selective trapping and remote sensing of microparticles. J. Appl. Phys., 121, 023102(2017).

    [18] N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, M. H. Hong. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates. Opt. Express, 19, 6990-6998(2011).

    [19] K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, E. Ozbay. Investigation of magnetic resonances for different split-ring resonator parameters and designs. New J. Phys., 7, 168(2005).

    [20] Z. Wang, Z. Geng, W. Fang. Exploring performance of THz metamaterial biosensor based on flexible thin-film. Opt. Express, 28, 26370-26384(2020).

    [21] R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, W. Zhang. Optically thin terahertz metamaterials. Opt. Express, 16, 6537-6543(2008).

    [22] N. Gneiding, O. Zhuromskyy, E. Shamonina, U. Peschel. Circuit model optimization of a nano split ring resonator dimer antenna operating in infrared spectral range. J. Appl. Phys., 116, 164311(2014).

    [23] C. H. Zhang, J. B. Wu, B. B. Jin, Z. M. Ji, L. Kang, W. W. Xu, J. Chen, M. Tonouchi, P. H. Wu. Low-loss terahertz metamaterial from superconducting niobium nitride films. Opt. Express, 20, 42-47(2012).

    [24] J. Wu, B. Jin, Y. Xue, C. Zhang, H. Dai, L. Zhang, C. Cao, L. Kang, W. Xu, J. Chen, P. Wu. Tuning of superconducting niobium nitride terahertz metamaterials. Opt. Express, 19, 12021-12026(2011).

    [25] R. Singh, A. K. Azad, J. F. O’Hara, A. J. Taylor, W. Zhang. Effect of metal permittivity on resonant properties of terahertz metamaterials. Opt. Lett., 33, 1506-1508(2008).

    [26] R. Marqués, F. Mesa, J. Martel, F. Medina. Comparative analysis of edge-and broadside-coupled split ring resonators for metamaterial design-theory and experiments. IEEE Trans. Antennas Propag., 51, 2572-2581(2003).

    [27] D. R. Chowdhury, J. F. O’Hara, A. J. Taylor, A. K. Azad. Orthogonally twisted planar concentric split ring resonators towards strong near field coupled terahertz metamaterials. Appl. Phys. Lett., 104, 101105(2014).

    [28] R. Cheng, L. Xu, X. Yu, L. Zou, Y. Shen, X. Deng. High-sensitivity biosensor for identification of protein based on terahertz Fano resonance metasurfaces. Opt. Commun., 473, 125850(2020).

    [29] Y. Li, X. Chen, F. Hu, D. Li, H. Teng, Q. Rong, W. Zhang, J. Han, H. Liang. Four resonators based high sensitive terahertz metamaterial biosensor used for measuring concentration of protein. J. Phys. D, 52, 095105(2019).

    [30] K. Meng, S. J. Park, A. D. Burnett, T. Gill, C. D. Wood, M. Rosamond, L. H. Li, L. Chen, D. R. Bacon, J. R. Freeman, P. Dean, Y. H. Ahn, E. H. Linfield, A. G. Davies, J. E. Cunningham. Increasing the sensitivity of terahertz split ring resonator metamaterials for dielectric sensing by localized substrate etching. Opt. Express, 27, 23164-23172(2019).

    [31] S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, Y. H. Ahn. Detection of microorganisms using terahertz metamaterials. Sci. Rep., 4, 4988(2014).

    [32] F. Taleb, I. Al-Naib, M. Koch. Free-standing complementary asymmetric metasurface for terahertz sensing applications. Sensors, 20, 2265(2020).

    [33] S. Wang, L. Xia, H. Mao, X. Jiang, S. Yan, H. Wang, D. Wei, H. Cui, C. Du. Terahertz biosensing based on a polarization-insensitive metamaterial. IEEE Photon. Technol. Lett., 28, 986-989(2016).

    [34] X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, J. Yao. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosens. Bioelectron., 126, 485-492(2019).

    [35] R. P. Pan, C. F. Hsieh, C. L. Pan, C. Y. Chen. Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range. J. Appl. Phys., 103, 093523(2008).

    [36] Y. K. Srivastava, L. Cong, R. Singh. Dual-surface flexible THz Fano metasensor. Appl. Phys. Lett., 111, 201101(2017).

    [37] Y. K. Srivastava, R. T. Ako, M. Gupta, M. Bhaskaran, S. Sriram, R. Singh. Terahertz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces. Appl. Phys. Lett., 115, 151105(2019).

    [38] M. Gupta, R. Singh. Terahertz sensing with optimized Q/Veff metasurface cavities. Adv. Opt. Mater., 8, 1902025(2020).

    [39] D. Dutta, D. De, S. Chaudhuri, S. K. Bhattacharya. Hydrogen production by cyanobacteria. Microb. Cell Fact., 4, 36(2005).

    [40] N. Ladygina, E. G. Dedyukhina, M. B. Vainshtein. A review on microbial synthesis of hydrocarbons. Process Biochem., 41, 1001-1014(2006).

    [41] B. Gasser, D. Mattanovich. Antibody production with yeasts and filamentous fungi: on the road to large scale?. Biotechnol. Lett., 29, 201-212(2007).

    [42] S. Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, A. A. Bettiol. Increased frequency shifts in high aspect ratio terahertz split ring resonators. Appl. Phys. Lett., 94, 064102(2009).

    Harry Miyosi Silalahi, Wei-Fan Chiang, Yi-Hong Shih, Wan-Yi Wei, Jou-Yu Su, Chia-Yi Huang. Folding metamaterials with extremely strong electromagnetic resonance[J]. Photonics Research, 2022, 10(9): 2215
    Download Citation