• INFRARED
  • Vol. 43, Issue 8, 33 (2022)
Lian DUAN and Yang ZHANG
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1672-8785.2022.08.006 Cite this Article
    DUAN Lian, ZHANG Yang. Retrieving Method of Cloud Top Height Based on Satellite Infrared Window Data[J]. INFRARED, 2022, 43(8): 33 Copy Citation Text show less
    References

    [3] Li X, Ma F, Li X, et al. LEO constellation augmented multi-GNSS for rapid PPP convergence [J]. Journal of Geodesy, 2019, 93(5): 749-764.

    [14] Hasler A F. Stereographic observations from satellites: an important new tool for the atmospheric science [J]. Bulletin American Meteorological Society, 1981, 62(2): 194-212.

    [15] Bridge G C. Meteosat system guide (Volume 5): Meteorological Products [R]. Darmstadt: Meteosat Data Management Department, 1980.

    [16] Wielicki B A, Fusco L, Morgan J, et al. Operational production of cloud motion vectors (satellite winds) from Meteosat image data: use of data from meteorological satellites [J]. European Space Agency, 1979, 143: 65-75.

    [17] Szejwach G. Determination of semi-transparent cirrus cloud temperature from infrared radiances: application to METEOSAT [J]. Journal of Applied Meteorology, 1982, 21(3): 384-393.

    [18] Eyer J R, Menzel W P. Retrieval of cloud parameters from satellite sounder data: a simulation study [J]. Journal of Applied Meteorology, 1989, 28(4): 267-275.

    [19] Platnick S, King M D, Ackerman S A, et al. The MODIS cloud products: algorithms and examples from Terra [J]. IEEE Trans Geosci Remote Sens, 2003, 41: 459-473.

    [20] Menzel W P, Smith W L, Stewart T R. Improved cloud motion wind vector and altitude assignment using VAS [J]. Journal of Applied Meteorology, 1983, 22(3): 377-384.

    [21] Robert E H, Steve A, Paolo A, et al. An improvement to the high-spectral-resolution CO2-slicing cloud top altitude retrieval [J]. Journal of Atmospheric and Oceanic Technology, 2006, 23(5): 653-670.

    [22] Aumann H H, Desouza-Machado S G, Behrangi A. Deep convective clouds at the tropopause [J]. Atmos Chem Phys, 2011, 11(3): 1167-1176.

    [23] Hawkinson J A, Fleltz W, Ackerman S A. A comparison of GOES sounder and cloud lidar and radar-retrieved cloud-top heights [J]. Journal of Applied Meteorology, 2005, 44(8): 1234-1242.

    [24] Onderjka R J, Conver J H. Note on the stereo interpretation of NIMBUS Ⅱ APT photography [J]. Monthly Weather Review, 1996, 94(10): 611-614.

    [25] Madine S, Key M P, Mahoney J L. Comparing the FAA cloud top height product and THENESDIS/CIMSS cloud top pressure product in oceanic regions [C]. Monona: 11th Conference on Satellite Meteorology and Oceanography, 2001.

    [26] Kikuchi K, Kasai T. Stereoscopic analysis of photographs taken by NIMBUS Ⅱ APT system [J]. Journal of the Meteorological Society of Japan, 1968, 46: 60-67.

    [27] Shenk W E, Holub R. An example of detailer cloud contouring from Apollo-6 photography [J]. Bulletin American Meteorological Society, 1971, 52(4): 238.

    [28] Whitehead V S, Browne I D, Garcia J G. Cloud height contouring from Apollo-6 photography [J]. Bulletin American Meteorological Society, 1969, 50(1): 4-15.

    [29] Shenk W E, Neff R A. Stereographic cloud analysis from Apollo-6 photographs over a cold front [J]. Bulletin American Meteorological Society, 1975, 56(1): 4-15.

    [30] Black P G. Some aspects of tropical storm structure revealed by hand held camera photographs from space [M]. Washington D C: United States Government Printing Office, 1977.

    [33] Seiz G, Poli D, Gruen A. Stereo cloud-top height from MISR and AATER for validation of Eumetsat cloud-top height products [C]. Prague: Eumetsat Users′ Conference, 2012.

    [34] Moronet C, Davies R, Muller J P. Operational retrieval of cloud-top height using MISR data [J]. Geoscience and Remote Sensing, IEEE Transactions, 2002, 40(7): 1532-1540.

    [36] Wang H Q, Lu S H, Zhang Y, et al. Determination of Cloud-Top Height from Stereoscopic Observation [J]. Progress in Natural Science, 2002, 12(9): 689-694.

    [43] Menzel W P, Wanzong S, Nieman S, et al. Assigning heights cloud motion vectors [EB/OL]. http://cimssssecwiscedu/iwwg/2nd%20Wind%20Workshop/p105-116_Menzel-Assigning.pdf, 2015.

    [44] Schmetz J, Holmlund K, Hoffman J, et al. Operational cloud-motion winds from meteosat infrared images [J]. Journal of Applied Meteorology, 1993, 32(7): 1206-1225.

    [45] Smith W L, Frey R. Altitude specification of cloud motion winds [EB/OL]. http://cimssssecwiscedu/iwwg/1st%20Wind%20Workshop/p189-198Smith_Altitude Specs.pdf, 2015.

    [46] Schreiner A J, Menzel W P, Heidinger A, et al. Comparison of cloud motion vector height assignment techniques using the GOES-12 imager [C]. Helsinki: Proc Seventh International Winds Workshop, 2004.

    [47] Nieman S J, Schmetz J, Menzel W P. A comparison of several techniques to assign heights to cloud tracers [J]. Journal of Applied Meteorology, 1993, 32(9): 1559-1568.

    [48] Wielicki B A, Parker L. On the determination of cloud cover from satellite sensors: the effects of sensor spatial resolutions [J]. Journal of Geophysical Research, 1992, 97: 12799-12823.

    [50] Hollars S, Fu Q, Comstock J, et al. Comparison of cloud-Top height retrievals from ground-based 35 GHz MMCR and GMS-5 satellite observation at ARM TWP Manus site [J]. Atmosphere Research, 2004, 72(1): 169-186.

    [51] Shenk W E, Curran R J. A multi-spectral method for estimating cirrus cloud top heights [J]. Journal of Applied Meteorology, 1973, 12(7): 1213-1216.

    [53] Berendes T A, Mecikalski J R, Mackenzie W M J, et al. Convective cloud identification and classification in daytime satellite imagery using standard deviation limited adaptive clustering [J]. Journal of Geophysical Research, 2008, 113(7): D010287.

    [54] Szejwach G. Determination of semi-transparent cirrus cloud temperature from infrared radiances: application to meteosat [J]. Journal of Applied Meteorology, 1982, 21(3): 384-393.

    [57] Schmetz J, Pili P, Tjemkes S, et al. An introduction to meteosat second generation (MSG) [J]. Bull Amer Meteor, 2002, 83(7): 977-992.

    [58] Bedka K, Brunner J, Dworak R, et al. Objective satellite-based Detection of overshooting tops using infrared window channel brightness temperature gradients [J]. J Appl Meteor Climatol, 2010, 49(2): 181-202.

    [59] Mecikalski I R, Bedka K M. Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery [J]. Mon Wea Rev, 2006, 134(1): 49-78.

    [60] Mecikalski I R, Bedka K M, Paech S J, et al. A statistical evaluation of GOES cloud-top properties for nowcasting convective initiation [J]. Mon Wea Rev, 2008, 136(12): 4899-4914.

    [63] Inoue T. On the temperature and effective emissivity determination of semitransparent cirrus clouds by bi-spectral measurements in the 10um window region [J]. Journal of the Meteorological Society of Japan, 1985, 63(1): 88-99.

    [64] Inoue T. A cloud type classification with NOAA 7 split-window measurements [J]. Journal of Geophysical Research, 1987, 92(D4): 3991-4000.

    [65] Hamada A, Nishi N, Iasaki S, et al. Cloud type and top height estimation for tropical upper-tropospheric clouds using GMS-5 split-window measurements combined with cloud radar measurements [J]. Scientific Online Letters on the Atmosphere Sola, 2008, 4(1): 57-60.

    [66] Hamada A, Nishi N. Development of a cloud-top height estimation method by geostationary satellite split-window measurements trained with cloudsat data [J]. Journal of Applied Meteorology & Climatology, 2010, 49(9): 2035-2049.

    [68] Joro S, Dybbroe A. Validating the AVHRR cloud top temperature and height product using weather radar data. National institute of water and atmospheric research, New Zealand & SMHI, visiting scientist report [EB/OL]. www.nwcsaf.org/web/guest/vsa2, 2004.

    [69] Heidinger A K, Pavolonis M J. Gazing at cirrus clouds for 25 years through a split window. Part Ⅰ: methodology [J]. Journal of Applied Meteorology and Climatology, 2010, 48(6): 1100-1116.

    DUAN Lian, ZHANG Yang. Retrieving Method of Cloud Top Height Based on Satellite Infrared Window Data[J]. INFRARED, 2022, 43(8): 33
    Download Citation