• Chinese Physics B
  • Vol. 29, Issue 8, (2020)
Linling Luo1, Xiaoqiu Ye1, Guanghui Zhang2, Huaqin Kou2, Renjin Xiong2, Ge Sang2、†, Ronghai Yu3, and Dongliang Zhao4
Author Affiliations
  • 1Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 62907, China
  • 2Institute of Materials, China Academy of Engineering Physics, Mianyang 61900, China
  • 3School of Materials Science and Engineering, Beihang University, Beijing 100191, China
  • 4Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing 100081, China
  • show less
    DOI: 10.1088/1674-1056/ab9289 Cite this Article
    Linling Luo, Xiaoqiu Ye, Guanghui Zhang, Huaqin Kou, Renjin Xiong, Ge Sang, Ronghai Yu, Dongliang Zhao. Enhancement of hydrogenation kinetics and thermodynamic properties of ZrCo1−xCrx (x = 0−0.1) alloys for hydrogen storage[J]. Chinese Physics B, 2020, 29(8): Copy Citation Text show less
    XRD spectra of ZrCo1 − xCrx (x = 0−0.1) alloys.
    Fig. 1. XRD spectra of ZrCo1 − xCrx (x = 0−0.1) alloys.
    XRD spectra of ZrCo1 − xCrx (x = 0−0.1)−H systems.
    Fig. 2. XRD spectra of ZrCo1 − xCrx (x = 0−0.1)−H systems.
    EDS mappings of ZrCo0.95Cro0.05 alloy.
    Fig. 3. EDS mappings of ZrCo0.95Cro0.05 alloy.
    First hydrogenation kinetics of ZrCo1 − xCrx (x = 0−0.1) alloys under 4-bar H2 at 348 K.
    Fig. 4. First hydrogenation kinetics of ZrCo1 − xCrx (x = 0−0.1) alloys under 4-bar H2 at 348 K.
    Initial hydriding kinetic curves for ZrCo (a) and ZrCo0.95Cr0.05 (b) alloys at 323 K, 348 K, and 373 K.
    Fig. 5. Initial hydriding kinetic curves for ZrCo (a) and ZrCo0.95Cr0.05 (b) alloys at 323 K, 348 K, and 373 K.
    Plots of ln(−ln(1 − α)) versus ln t for the hydrogenation of ZrCo (a) and ZrCo0.95Cr0.05 (b) alloys.
    Fig. 6. Plots of ln(−ln(1 − α)) versus ln t for the hydrogenation of ZrCo (a) and ZrCo0.95Cr0.05 (b) alloys.
    Plots of ln kversus 1000/T for the hydrogenation of ZrCo and ZrCo0.95Cr0.05 alloys.
    Fig. 7. Plots of ln kversus 1000/T for the hydrogenation of ZrCo and ZrCo0.95Cr0.05 alloys.
    PCT curves of ZrCo1 − xCrx (x = 0−0.1)−H systems.
    Fig. 8. PCT curves of ZrCo1 − xCrx (x = 0−0.1)−H systems.
    Van’t Hoff curves for ZrCo1 − xCrx (x = 0−0.1)−H systems.
    Fig. 9. Van’t Hoff curves for ZrCo1 − xCrx (x = 0−0.1)−H systems.
    Hydrogen pressure evolution of ZrCo1 − xCrx (x = 0−0.1)−H systems at 798 K insulated for 10 h.
    Fig. 10. Hydrogen pressure evolution of ZrCo1 − xCrx (x = 0−0.1)−H systems at 798 K insulated for 10 h.
    XRD patterns of disproportionation products of ZrCo1 − xCrx (x = 0−0.1) alloys.
    Fig. 11. XRD patterns of disproportionation products of ZrCo1 − xCrx (x = 0−0.1) alloys.
    The isothermal disproportionation curves of ZrCo (a) and ZrCo0.95Cr0.05 (b) samples.
    Fig. 12. The isothermal disproportionation curves of ZrCo (a) and ZrCo0.95Cr0.05 (b) samples.
    Plots of ln(−ln(1 − α)) versus ln t for the disproportionation of ZrCo (a) and ZrCo0.95Cr0.05 (b) alloys at different temperatures.
    Fig. 13. Plots of ln(−ln(1 − α)) versus ln t for the disproportionation of ZrCo (a) and ZrCo0.95Cr0.05 (b) alloys at different temperatures.
    Plots of ln kversus 1000/T for the disproportionation of ZrCo and ZrCo0.95Cr0.05 alloys.
    Fig. 14. Plots of ln kversus 1000/T for the disproportionation of ZrCo and ZrCo0.95Cr0.05 alloys.
    SamplesLattice parameters/ÅCell volume/Å3
    x = 03.191232.4984
    x = 0.0253.191732.5137
    x = 0.053.192132.5259
    x = 0.0753.193632.5718
    x = 0.13.194432.5963
    Table 1. Lattice parameters and cell volume of ZrCo phase in ZrCo1 − xCrx (x = 0−0.1) alloys.
    SamplesZr LCo KCr K
    x = 048.3651.64
    x = 0.02548.0850.141.78
    x = 0.0547.5049.343.16
    x = 0.07547.4048.124.48
    x = 0.148.2446.265.50
    Table 2. Average chemical composition (atom%) for ZrCo1 − xCrx (x = 0−0.1) alloys.
    SamplesIncubation period/sActivation time/sHydrogen absorption capability/(H(f.u.))
    x = 03077152.896
    x = 0.0251431382.822
    x = 0.05913162.803
    x = 0.07577592.774
    x = 0.161952.679
    Table 3. Initial activation behaviors of ZrCo1 − xCrx (x = 0−0.1) alloys under 4-bar H2 at 348 K. Incubation period: the time needed to begin hydrogen absorption. Activation time: the time needed to reach 95% of saturated hydrogen capacity.
    SystemsΔH/(kJ/mol H2)ΔS/(kJ/mol⋅K H2)
    ZrCo–H[19]89.71226.16
    ZrCo–H90.41233.45
    ZrCo0.975Cr0.025−H91.02234.34
    ZrCo0.95Cr0.05−H91.80235.59
    ZrCo0.925Cr0.725−H92.33236.38
    ZrCo0.9Cr0.1−H92.54236.48
    Table 4. Thermodynamic characteristics for hydrogen desorption of ZrCo1 − xCrx (x = 0−0.1)−H systems.
    SampleAbsorbed pressure/kPaInitial pressure/kPaEnding pressure/kPaRemaining pressure/kPaExtent of degradation/%
    x = 0130.14130.791.872.683.68
    x = 0.025126.73125.186.668.280.72
    x = 0.05126.0412486.464.977.24
    x = 0.075119.711480.559.975.06
    x = 0.1112.7310675.45370.52
    Table 5. Disproportionation behaviors of ZrCo1 − xCrx (x = 0−0.1)−H systems at 798 K insulated for 10 h. Absorbed pressure is the change in hydrogen pressure of activation process at room temperature.
    Linling Luo, Xiaoqiu Ye, Guanghui Zhang, Huaqin Kou, Renjin Xiong, Ge Sang, Ronghai Yu, Dongliang Zhao. Enhancement of hydrogenation kinetics and thermodynamic properties of ZrCo1−xCrx (x = 0−0.1) alloys for hydrogen storage[J]. Chinese Physics B, 2020, 29(8):
    Download Citation