• Optics and Precision Engineering
  • Vol. 27, Issue 2, 421 (2019)
ZHANG Qian-ying1,* and XIE Xiao-zhen2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/ope.20192702.0421 Cite this Article
    ZHANG Qian-ying, XIE Xiao-zhen. Hyperspectral image restoration via weighted Schatten norm low-rank representation[J]. Optics and Precision Engineering, 2019, 27(2): 421 Copy Citation Text show less
    References

    [1] WANG Q CH, FU G Y, WANG H Q, et al.. Fusion of multi-scale feature using multiple kernel learning for hyperspectral image land cover classification [J]. Opt. Precision Eng., 2018, 26(4): 980-988. (in Chinese)

    [2] HUANG H, CHEN M L, DUAN Y L, et al.. Hyper-spectral image classification using spatial-spectral manifold reconstruction [J]. Opt. Precision Eng., 2018, 26(7): 1827-1836. (in Chinese)

    [3] TOCHON G, CHANUSSOT J, MURA M D, et al.. Object tracking by hierarchical decomposition of hyperspectral video sequences: application to chemical gas plume tracking [J]. IEEE Transactions on Geoscience & Remote Sensing, 2017, 55(8): 4567-4585.

    [4] HE F, WANG R, YU Q, et al.. Feature extraction of hyperspectral images of weighted spatial and spectral locality preserving projection (WSSLPP) [J]. Opt. Precision Eng., 2017, 25(1): 263-273. (in Chinese)

    [5] ZHANG L P, LI J Y. Development and prospect of sparse representation-based hyperspectral image processing and analysis [J]. Journal of Remote Sensing, 2016, 20(5): 1091-1101. (in Chinese)

    [6] ZHANG H, HE W, ZHANG L, et al.. Hyperspectral image restoration using low-rank matrix recovery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4729-4743.

    [7] CAI J, DONG B, OSHER S, et al.. Image restoration: total variation, wavelet frames, and beyond [J]. Journal of the American Mathematical Society, 2012, 25(4): 1033-1089.

    [8] ELAD M, AHARON M. Image denoising via sparse and redundant representations over learned dictionaries [J]. IEEE Transactions on Image Processing, 2006, 15(12): 3736-3745.

    [9] DABOV K, FOI A, KATKOVNIK V, et al.. Image denoising by sparse 3-D transform-domain collaborative filtering [J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080.

    [10] MAGGIONI M, KATKOVNIK V, EGIAZARIAN K, et al.. Nonlocal transform-domain filter for volumetric data denoising and reconstruction [J]. IEEE Transactions on Image Processing, 2012, 22(1): 119-133.

    [11] WANG Y, PENG J, ZHAO Q, et al.. Hyperspectral image restoration via total variation regularized low-rank tensor decomposition [J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2018, 11(4): 1227-1243.

    [12] CHANG C I, DU Q. Interference and noise-adjusted principal components analysis [J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2387-2396.

    [13] CANDS E J, LI X, MA Y, et al.. Robust principal component analysis JACM 58(3): 11 [J]. Journal of the Acm., 2011, 58(3): 1-37.

    [14] XIE Y, QU Y, TAO D, et al.. Hyperspectral image restoration via iteratively regularized weighted Schatten p-norm minimization [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4642-4659.

    [15] LIU G C, LIN Z C, YAN S C, et al.. Robust recovery of subspace structures by low-rank representation [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184.

    [16] CAI R R, WANG B. Hyperspectral imagery restoration based on low-rank representation [J]. Journal of Fudan University (Natural Science), 2017, 56(3): 346-358. (in Chinese)

    [17] SUMARSONO A, DU Q. Low-rank subspace representation for supervised and unsupervised classification of hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016, 9(9): 4188-4195.

    [18] XU Y, WU Z, LI J, et al.. Anomaly detection in hyperspectral images based on low-rank and sparse representation [J]. IEEE Transactions on Geoscience & Remote Sensing, 2016, 54(4): 1990-2000.

    [19] GU S, ZHANG L, ZUO W, et al.. Weighted nuclear norm minimization with application to image denoising [C]. Computer Vision and Pattern Recognition. IEEE, 2014: 2862-2869.

    [20] YIN M, GAO J B, LIN Z C. Laplacian regularized low-rank representation and its applications [J]. IEEE Trans. on Pattern Anal. Mach. Intell., 2016, 38(3): 504-517.

    [21] CAI J F, CAND, S, E J, et al.. A singular value thresholding algorithm for matrix completion [J]. Siam Journal on Optimization, 2008, 20(4): 1956-1982.

    [22] BOYD S, PARIKH N, CHU E, et al.. Distributed optimization and statistical learning via the alternating direction method of multipliers [J]. Foundations & Trends in Machine Learning, 2010, 3(1): 1-122.

    [23] XIE Y, GU S, LIU Y, et al.. Weighted Schatten p-norm minimization for image denoising and background subtraction [J]. IEEE Transactions on Image Processing, 2015, 25(10): 4842-4857.

    [24] ZUO W, MENG D, ZHANG L, et al.. A generalized iterated shrinkage algorithm for non-convex sparse coding [C]. IEEE International Conference on Computer Vision. IEEE, 2013: 217-224.

    [25] LIN Z, LIU R, SU Z. Linearized alternating direction method with adaptive penalty for low-rank representation [J]. Advances in Neural Information Processing Systems, 2011: 612-620.

    [26] JOS M B-D, JOS M P N. Hyperspectral subspace identification [J]. IEEE Transactions on Geoscience & Remote Sensing, 2008, 46(8): 2435-2445.

    CLP Journals

    [1] SHEN Fan, LI Han-lin, SUN Bin, YU Chun-yu. X-ray image denoising using blind source separation in anscombe domain[J]. Optics and Precision Engineering, 2020, 28(1): 244

    [2] ZHANG Shao-lei, FU Guang-yuan, WANG Hong-qiao, ZHAO Yu-qing. Total-variation-regularized local spectral unmixing for hyperspectral image super-resolution[J]. Optics and Precision Engineering, 2019, 27(12): 2683

    ZHANG Qian-ying, XIE Xiao-zhen. Hyperspectral image restoration via weighted Schatten norm low-rank representation[J]. Optics and Precision Engineering, 2019, 27(2): 421
    Download Citation