• Chinese Journal of Lasers
  • Vol. 45, Issue 10, 1001008 (2018)
Bai Lele1、2, Wen Xin1、2, Yang Yulin1、2, Liu Jinyu1、2, He Jun1、2、3, and Wang Junmin1、2、3、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/cjl201845.1001008 Cite this Article Set citation alerts
    Bai Lele, Wen Xin, Yang Yulin, Liu Jinyu, He Jun, Wang Junmin. 397.5 nm Ultra-Violet Laser Power Stabilization Based on Feedback Control via Acousto-Optic Frequency Shifter[J]. Chinese Journal of Lasers, 2018, 45(10): 1001008 Copy Citation Text show less
    References

    [1] Kim D I, Rhee H G, Song J B et al. Laser output power stabilization for direct laser writing system by using an acousto-optic modulator[J]. Review of Scientific Instruments, 78, 103110(2007).

    [2] Miao S F, Li C X, Gao M et al. Design of laser power stabilization system based on acousto-optic modulation for the transmissivity and reflectivity measurement of optical devices[J]. Chinese Journal of Lasers, 9, 263-269(2016).

    [3] Yun P, Tricot F, Calosso C E et al. High-performance coherent population trapping clock with polarization modulation[J]. Physical Review Applied, 7, 014018(2017). http://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.7.014018

    [4] Wang X M, Meng Y L, Li L et al. Frequency and intensity noises of probe laser in integrating sphere cold atom clock[J]. Chinese Journal of Lasers, 44, 0912001(2017).

    [5] Linke N M, Ballance C J, Lucas D M. Injection locking of two frequency-doubled lasers with 3.2 GHz offset for driving Raman transitions with low photon scattering in 43Ca+[J]. Optics Letters, 38, 5087-5089(2013).

    [6] Wen X, Han Y S, Liu J N et al. Generation of squeezed states at low analysis frequencies[J]. Acta Physica Sinica, 67, 024207(2018).

    [7] Wen X, Han Y S, Bai J D et al. Cavity-enhanced frequency doubling from 795 nm to 3975 nm ultra-violet coherent radiation with PPKTP crystals in the low pump power regime[J]. Optics Express, 22, 32293(2014).

    [8] Yang W H, Jin X L, Yu X D et al. Dependence of measured audio-band squeezing level on local oscillator intensity noise[J]. Optics Express, 25, 24262-24271(2017). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-25-20-24262

    [9] Wen X, Han Y S, Liu J N et al. Polarization squeezing at the audio frequency band for the Rubidium D1 line[J]. Optics Express, 25, 20737-20748(2017). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-25-17-20737

    [10] Farinas A D, Gustafson E K, Byer R L. Frequency and intensity noise in an injection-locked, solid-state laser[J]. Journal of the Optical Society of America B, 12, 328-334(1995). http://www.opticsinfobase.org/abstract.cfm?uri=josab-12-2-328

    [11] Harb C C, Ralph T C, Huntington E H. et al. Intensity-noise properties of injection-locked lasers[J]. Physical Review. A, Atomic, Molecular, and Optical Physics, 54, 4370-4382(1996). http://www.ncbi.nlm.nih.gov/pubmed/9913989

    [12] Harb C C, Gray M B, Bachor H A et al. Suppression of the intensity noise in a diode-pumped Nd: YAG nonplanar ring laser[J]. IEEE Journal of Quantum Electronics, 30, 2907-2913(1994). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=362718

    [13] Chen Y L, Zhang J, Li Y M et al. Reduction of intensity noise of single-frequency Nd∶YVO 4 laser using mode cleaner[J]. Chinese Journal of Lasers, 28, 197-200(2001).

    [14] Kuhr S, Alt W, Schrader D et al. Deterministic delivery of a single atom[J]. Science, 293, 278-280(2001). http://www.ncbi.nlm.nih.gov/pubmed/11408622

    [15] Li G, Zhang S, Isenhower L et al. Crossed vortex bottle beam trap for single-atom qubits[J]. Optics Letters, 37, 851-853(2012). http://www.ncbi.nlm.nih.gov/pubmed/22378415

    [16] et alLaser intensity stabilization by using of opto-electronic feedback control based on an acousto-optical frequency-shifting system[J]. Chinese Journal of Optics, 7, 234-239(2014).

         Jin G, Jin G, Wen X, Wen X, Yang B D, Yang B D et al. Laser intensity stabilization by using of opto-electronic feedback control based on an acousto-optical frequency-shifting system[J]. Chinese Optics, 7, 234-239(2014).

    [17] Du J J, Li W F, Li G et al. Intensity noise suppression of light field by optoelectronic feedback[J]. Optik-International Journal for Light and Electron Optics, 124, 3443-3445(2013). http://www.sciencedirect.com/science/article/pii/S0030402612008327

    [18] Zhao R C, Fu X H, Sun J F et al. High power 507.4 nm continuous laser generated by high efficient external cavity frequency doubling[J]. Chinese Journal of Lasers, 44, 0701001(2017).

    Bai Lele, Wen Xin, Yang Yulin, Liu Jinyu, He Jun, Wang Junmin. 397.5 nm Ultra-Violet Laser Power Stabilization Based on Feedback Control via Acousto-Optic Frequency Shifter[J]. Chinese Journal of Lasers, 2018, 45(10): 1001008
    Download Citation