• Acta Photonica Sinica
  • Vol. 51, Issue 5, 0551307 (2022)
Zheyuan XU1、3、4, Ying JIANG2、3、4、*, and Anlian PAN1、3、4、*
Author Affiliations
  • 1College of Materials Science and Engineering,Hunan University,Changsha 410082,China
  • 2School of Physics & Electronics,Hunan University,Changsha 410082,China
  • 3Key Laboratory for Micro-Nano Physics and Technology of Hunan Province,Changsha 410082,China
  • 4Hunan Innovation Research Institute of Optoelectronic Integration,Changsha 410082,China
  • show less
    DOI: 10.3788/gzxb20225105.0551307 Cite this Article
    Zheyuan XU, Ying JIANG, Anlian PAN. Research Progress on Exciton-polaritons in Two-dimensional Transition Metal Chalcogenides(Invited)[J]. Acta Photonica Sinica, 2022, 51(5): 0551307 Copy Citation Text show less
    References

    [1] G E MOORE. Cramming more components onto integrated circuits. IEEE Solid-State Circuits Society Newsletter, 38, 33-35(1965).

    [2] G E MOORE. Progress in digital integrated electronics. IEEE Solid-State Circuits Society Newsletter, 21, 11-13(1975).

    [3] S E THOMPSON, S PARTHASARATHY. Moore's law: the future of Si microelectronics. Materials Today, 9, 20-25(2006).

    [4] T N THEIS, H S P WONG. The end of Moore's law: a new beginning for information technology. Computing in Science & Engineering, 19, 41-50(2016).

    [5] Zhiping ZHOU, Zhijuan TU, Tiantian LI et al. Silicon photonics for advanced optical interconnections. Journal of Lightwave Technology, 33, 928-933(2015).

    [6] Zhiping ZHOU, Bing YIN, J MICHEL. Corrigendum: On-chip light sources for silicon photonics. Light: Science & Applications, 5, e16098(2016).

    [7] A H ATABAKI, S MOAZENI, F PAVANELLO et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature, 556, 349-354(2018).

    [8] D MILLER. Device requirements for optical interconnects to silicon chips. Proceedings of the IEEE, 97, 1166-1185(2009).

    [9] P J PAUZAUSKIE, Peidong YANG. Nanowire photonics. Materials Today, 9, 36-45(2006).

    [10] K V EMTSEV, A BOSTWICK, K HORN et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Materials, 8, 203-207(2009).

    [11] A D FRANKLIN. Nanomaterials in transistors: From high-performance to thin-film applications. Science, 349, aab2750(2015).

    [12] Zhicheng LIU, Hao SUN, Leijun YIN et al. Single crystal erbium compound nanowires as high gain material for on-chip light source applications. Frontiers of Optoelectronics, 9, 312-317(2016).

    [13] Peiqi ZHOU, Xingjun WANG, Yandong HE et al. A high-power, high-efficiency hybrid silicon-based erbium silicate-silicon nitride waveguide laser. IEEE Journal of Quantum Electronics, 56, 1100111(2020).

    [14] Peiqi ZHOU, Xingjun WANG, Yandong HE. A sub-kHz narrow-linewidth, and hundred-mW high-output-power silicon-based Er silicate laser with hybrid pump and signal co-resonant cavity. IEEE Photonics Journal, 12, 1500212(2020).

    [15] Kun HUANG. Lattice vibrations and optical waves in ionic crystals. Nature, 167, 779-780(1951).

    [16] C H HENRY, J J HOPFIELD. Raman scattering by polaritons. Physical Review Letters, 15, 964-966(1965).

    [17] H T STINSON, J S WU, B Y JIANG et al. Infrared nanospectroscopy and imaging of collective superfluid excitations in anisotropic superconductors. Physical Review B, 90, 014502(2014).

    [18] D N BASOV, M M FOGLER, F J G ABAJO. Polaritons in van der Waals materials. Science, 354, aag1992(2016).

    [19] T LOW, A CHAVES, J D CALDWELL et al. Polaritons in layered two-dimensional materials. Nature Materials, 16, 182-194(2017).

    [20] C WEISBUCH, M NISHIOKA, A ISHIKAWA et al. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Physical Review Letters, 69, 3314-3317(1992).

    [21] A IMAMOGLU, R J RAM, S PAU et al. Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers. Physical Review A, 53, 4250-4253(1996).

    [22] P G SAVVIDIS, J J BAUMBERG, R M STEVENSON et al. Angle-resonant stimulated polariton amplifier. Physical Review Letters, 84, 1547-1550(2000).

    [23] Hui DENG, G WEIHS, C SANTORI et al. Condensation of semiconductor microcavity exciton polaritons. Science, 298, 199-202(2002).

    [24] J KASPRZAK, M RICHARD, S KUNDERMANN et al. Bose-Einstein condensation of exciton polaritons. Nature, 443, 409-414(2006).

    [25] S CHRISTOPOULOS, G BALDASSARRI HOGER VON HOGERSTHAL, A J D GRUNDY et al. Room-temperature polariton lasing in semiconductor microcavities. Physical Review Letters, 98, 126405(2007).

    [26] A AMO, D SANVITTO, F P LAUSSY et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature, 457, 291-295(2009).

    [27] M RAMEZANI, A HALPIN, A I FERNÁNDEZ-DOMÍNGUEZ et al. Plasmon-exciton-polariton lasing. Optica, 4, 31-37(2016).

    [28] D G LIDZEY, D D C BRADLEY, M S SKOLNICK et al. Strong exciton-photon coupling in anorganic semiconductor microcavity. Nature, 395, 53-55(1998).

    [29] Ji TANG, Jian ZHANG, Yuanchao LV et al. Room temperature exciton-polariton Bose-Einstein condensation in organic single-crystal microribbon cavities. Nature Communications, 12, 1-8(2021).

    [30] S F CHICHIBU, T SOTA, G CANTWELL et al. Polarized photoreflectance spectra of excitonic polaritons in a ZnO single crystal. Journal of Applied Physics, 93, 756-758(2003).

    [31] S KENA-COHEN, S R FORREST. Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photonics, 4, 371-375(2010).

    [32] P BHATTACHARYA, T FROST, S DESHPANDE et al. Room temperature electrically injected polariton laser. Physical Review Letters, 112, 236802(2014).

    [33] K SHIMA, K FURUSAWA, S F CHICHIBU. Room-temperature cavity-polaritons in planar ZnO microcavities fabricated by a top-down process. Applied Physics Letters, 117, 071103(2020).

    [34] V M AGRANOVICH, M LITINSKAIA, D G LIDZEY. Cavity polaritons in microcavities containing disordered organic semiconductors. Physical Review B, 67, 085311(2003).

    [35] P MICHETTI, G C L ROCCA. Polariton states in disordered organic microcavities. Physical Review B, 71, 115320(2005).

    [36] K S DASKALAKIS, S A MAIER, S KENA-COHEN. Spatial coherence and stability in a disordered organic polariton condensate. Physical Review Letters, 115, 035301(2015).

    [37] Qinghua WANG, K KALANTAR-ZADEH, A KIS et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7, 699-712(2012).

    [38] A SPLENDIANI, Liang SUN, Yuanbo ZHANG et al. Emerging photoluminescence in monolayer MoS2. Nano Letters, 10, 1271-1275(2010).

    [39] K F MAK, C LEE, J HONE et al. Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters, 105, 136805(2010).

    [40] M M UGEDA, A J BRADLEY, Sufei SHI et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nature Materials, 13, 1091-1095(2014).

    [41] A CHERNIKOV, T C BERKELBACH, H M HILL et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Physical Review Letters, 113, 076802(2014).

    [42] Ziliang YE, Ting CAO, K O’BRIEN et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature, 513, 214-218(2014).

    [43] Keliang HE, N KUMAR, Liang ZHAO et al. Tightly bound excitons in monolayer WSe2. Physical Review Letters, 113, 026803(2014).

    [44] Yuan LIU, Jian GUO, Enbo ZHU et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature, 557, 696-700(2018).

    [45] Yuan LIU, Yu HUANG, Xiangfeng DUAN. Van der Waals integration before and beyond two-dimensional materials. Nature, 567, 323-333(2019).

    [46] Di XIAO, Guibin LIU, Wanxiang FENG et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Physical Review Letters, 108, 196802(2012).

    [47] Xiaodong XU, Wang YAO, Di XIAO et al. Spin and pseudospins in layered transition metal dichalcogenides. Nature Physics, 10, 343-350(2014).

    [48] P RIVERA, K L SEYLER, Hongyi YU et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science, 351, 688-691(2016).

    [49] Hui DENG, H HAUG, Y YAMAMOTO. Exciton-polariton Bose-Einstein condensation. Reviews of Modern Physics, 82, 1489-1537(2010).

    [50] K G LAGOUDAKIS, F MANNI, B PIETKA et al. Probing the dynamics of spontaneous quantum vortices in polariton superfluids. Physical Review Letters, 106, 115301(2011).

    [51] A AMO, S PIGEON, D SANVITTO et al. Polariton superfluids reveal quantum hydrodynamic solitons. Science, 332, 1167-1169(2011).

    [52] A S KUZNETSOV, D H O MACHADO, K BIERMANN et al. Electrically driven microcavity exciton-polariton optomechanics at 20 GHz. Physical Review X, 11, 021020(2021).

    [53] Xiaoze LIU, T GALFSKY, Zheng SUN et al. Strong light–matter coupling in two-dimensional atomic crystals. Nature Photonics, 9, 30-34(2014).

    [54] V SAVONA, L C ANDREANICB, P SCHWENDIMANN et al. Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes. Solid State Communications, 93, 733-739(1995).

    [55] G KHITROVA, H M GIBBS, M KIRA et al. Vacuum Rabi splitting in semiconductors. Nature physics, 2, 81-90(2006).

    [56] G LERARIO, A CANNAVALE, D BALLARINI et al. Room temperature Bloch surface wave polaritons. Optics Letters, 39, 2068-2071(2014).

    [57] S PIROTTA, M PATRINI, M LISCIDINI et al. Strong coupling between excitons in organic semiconductors and Bloch surface waves. Applied Physics Letters, 104, 051111(2014).

    [58] G LERARIO, D BALLARINI, A FIERAMOSCA et al. High-speed flow of interacting organic polaritons. Light: Science & Applications, 6, e16212(2017).

    [59] K F MAK, Jie SHAN. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nature Photonics, 10, 216-226(2016).

    [60] V SHAHNAZARYAN, I IORSH, I A SHELYKH et al. Exciton-exciton interaction in transition-metal dichalcogenide monolayers. Physical Review B, 96, 115409(2017).

    [61] F BARACHATI, A FIERAMOSCA, S HAFEZIAN et al. Interacting polariton fluids in a monolayer of tungsten disulfide. Nature Nanotechnology, 13, 906-909(2018).

    [62] A RAJA, L WALDECKER, J ZIPFEL et al. Dielectric disorder in two-dimensional materials. Nature Nanotechnology, 14, 832-837(2019).

    [63] J ZIPFEL, M KULIG, R PEREA-CAUSIN et al. Exciton diffusion in monolayer semiconductors with suppressed disorder. Physical Review B, 101, 115430(2020).

    [64] M WURDACK, E ESTRECHO, S TODD et al. Motional narrowing, ballistic transport, and trapping of room-temperature exciton polaritons in an atomically-thin semiconductor. Nature Communications, 12, 1-8(2021).

    [65] L LACKNER, M DUSEL, O A EGOROV et al. Tunable exciton-polaritons emerging from WS2 monolayer excitons in a photonic lattice at room temperature. Nature Communications, 12, 1-6(2021).

    [66] Xiaoze LIU, Wei BAO, Quanwei LI et al. Control of coherently coupled exciton polaritons in monolayer tungsten disulphide. Physical Review Letters, 119, 027403(2017).

    [67] Long ZHANG, R GOGNA, W BURG et al. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nature Communications, 9, 1-8(2018).

    [68] P TORMA, W L BARNES. Strong coupling between surface plasmon polaritons and emitters: a review. Reports on Progress in Physics, 78, 013901(2015).

    [69] D G BARANOV, M WERSÄLL, J CUADRA et al. Novel nanostructures and materials for strong light–matter interactions. ACS Photonics, 5, 24-42(2017).

    [70] S RUDIN, T L REINECKE. Temperature-dependent exciton linewidths in semiconductor quantum wells. Physical Review B, 41, 3017-3027(1990).

    [71] M SELIG, G BERGHAUSER, A RAJA et al. Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides. Nature Communications, 7, 1-6(2016).

    [72] Yilei LI, A CHERNIKOV, Xian ZHANG et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Physical Review B, 90, 205422(2014).

    [73] Jie GU, B CHAKRABORTY, M KHATONIAR et al. A room-temperature polariton light-emitting diode based on monolayer WS2. Nature Nanotechnology, 14, 1024-1028(2019).

    [74] Yenjung CHEN, J D CAIN, T K STANEV et al. Valley-polarized exciton–polaritons in a monolayer semiconductor. Nature Photonics, 11, 431-435(2017).

    [75] K F MAK, Keliang HE, Jie SHAN et al. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotechnology, 7, 494-498(2012).

    [76] G KIOSEOGLOU, A T HANBICKI, M CURRIE et al. Valley polarization and intervalley scattering in monolayer MoS2. Applied Physics Letters, 101, 221907(2012).

    [77] Hualing ZENG, Junfeng DAI, Wang YAO et al. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotechnology, 7, 490-493(2012).

    [78] Sun ZHENG, JIE Gu, Ghazaryan AREG et al. Optical control of room-temperature valley polaritons. Nature Photonics, 11, 491-496(2017).

    [79] N LUNDT, L DUSANOWSKI, E SEDOV et al. Optical valley Hall effect for highly valley-coherent exciton-polaritons in an atomically thin semiconductor. Nature Nanotechnology, 14, 770-775(2019).

    [80] A T HANBICKI, G KIOSEOGLOU, M CURRIE et al. Anomalous temperature-dependent spin-valley polarization in monolayer WS2. Scientific Reports, 6, 1-9(2016).

    [81] S DUFFERWIEL, T P LYONS, D D SOLNYSHKOV et al. Valley-addressable polaritons in atomically thin semiconductors. Nature Photonics, 11, 497-501(2017).

    [82] O BLEU, D D SOLNYSHKOV, G MALPUECH. Optical valley Hall effect based on transitional metal dichalcogenide cavity polaritons. Physical Review B, 96, 165432(2017).

    [83] M Z MAIALLE, A DE ANDRADA E SILVA, L J SHAM. Exciton spin dynamics in quantum wells. Physical Review B, 47, 15776-15788(1993).

    [84] M BARANOWSKI, A SURRENTE, D K MAUDE et al. Dark excitons and the elusive valley polarization in transition metal dichalcogenides. 2D Materials, 4, 025016(2017).

    [85] L QIU, C CHAKRABORTY, S DHARA et al. Room-temperature valley coherence in a polaritonic system. Nature Communications, 10, 1-5(2019).

    [86] R BALILI, V HARTWELL, D SNOKE et al. Bose-Einstein condensation of microcavity polaritons in a trap. Science, 316, 1007-1010(2007).

    [87] J A TORRES, R B KANER. Graphene synthesis: Graphene closer to fruition. Nature Materials, 13, 247-252(2014).

    [88] K S DASKALAKIS, S A MAIER, R MURRAY et al. Nonlinear interactions in an organic polariton condensate. Nature Materials, 13, 271-278(2014).

    [89] M WALDHERR, N LUNDT, M KLAAS et al. Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity. Nature Communications, 9, 1-6(2018).

    [90] C ANTON-SOLANAS, M WALDHERR, M KLAAS et al. Bosonic condensation of exciton-polaritons in an atomically thin crystal. Nature Materials, 20, 1233-1239(2021).

    [91] M D GIORG, M RAMEZAN, F TODISCO et al. Interaction and coherence of a plasmon–exciton polariton condensate. ACS Photonics, 5, 3666-3672(2018).

    [92] Jiaxin ZHAO, Rui SU, A FIERAMOSCA et al. Ultralow threshold polariton condensate in a monolayer semiconductor microcavity at room temperature. Nano Letters, 21, 3331-3339(2021).

    [93] D BAJONI, P SENELLART, E WERTZ et al. Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities. Physical Review Letters, 100, 047401(2008).

    [94] Ying JIANG, Shula CHEN, Weihao ZHENG et al. Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. Light: Science & Applications, 10, 1-29(2021).

    [95] E Y PAIK, L ZHANG, G W BURG et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature, 576, 80-84(2019).

    [96] Yuanda LIU, Hanlin FANG, A RASMITA et al. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Science Advances, 5, eaav4506(2019).

    [97] Zefang WANG, D A RHODES, K WATANABE et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature, 574, 76-80(2019).

    Zheyuan XU, Ying JIANG, Anlian PAN. Research Progress on Exciton-polaritons in Two-dimensional Transition Metal Chalcogenides(Invited)[J]. Acta Photonica Sinica, 2022, 51(5): 0551307
    Download Citation