• Frontiers of Optoelectronics
  • Vol. 9, Issue 4, 565 (2016)
Benxin WANG1, Xiang ZHAI1、*, Guizhen WANG2, Weiqing HUANG1, and Lingling WANG1
Author Affiliations
  • 1School of Physics and Electronics, Hunan University, Changsha 410082, China
  • 2Modern Educational Technology Center, Hunan Traditional Chinese Medical College, Zhuzhou 412012, China
  • show less
    DOI: 10.1007/s12200-016-0501-y Cite this Article
    Benxin WANG, Xiang ZHAI, Guizhen WANG, Weiqing HUANG, Lingling WANG. Broadband coplane metamaterial filter based on two nested split-ring-resonators[J]. Frontiers of Optoelectronics, 2016, 9(4): 565 Copy Citation Text show less
    References

    [1] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980

    [2] Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969

    [3] Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index. Science, 2004, 305(5685): 788–792

    [4] Pendry J B, Holden A J, Robbins D J, Stewart W J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084

    [5] Yang J, Sauvan C, Liu H T, Lalanne P. Theory of .shnet negative-index optical metamaterials. Physical Review Letters, 2011, 107(4): 043903

    [6] Dolling G, Enkrich C, Wegener M, Zhou J F, Soukoulis C M, Linden S. Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. Optics Letters, 2005, 30(23): 3198–3200

    [7] Liu N, Liu H, Zhu S, Giessen H. Stereometamaterials. Nature Photonics, 2009, 3(3): 157–162

    [8] Enkrich C, Wegener M, Linden S, Burger S, Zschiedrich L, Schmidt F, Zhou J F, Koschny T, Soukoulis C M. Magnetic metamaterials at telecommunication and visible frequencies. Physical Review Letters, 2005, 95(20): 203901

    [9] ChenHT,O’Hara J F, Taylor A J, Averitt R D, Highstrete C, Lee M, Padilla W J. Complementary planar terahertz metamaterials. Optics Express, 2007, 15(3): 1084–1095

    [10] Hussain S, Woo J M, Jang J . Dual-band terahertz metamaterials based on nested split ring resonators. Applied Physics Letters, 2012, 101(9): 091103

    [11] Wang B, Wang L, Wang G, Wang L, Zhai X, Li X, Huang W. A simple nested metamaterial structure with enhanced bandwidth performance. Optics Communications, 2013, 303: 13–14

    [12] Chowdhury D R, Singh R, Reiten M, Chen H T, Taylor A J, O’Hara J F, Azad A K. A broadband planar terahertz metamaterial with nested structure. Optics Express, 2011, 19(17): 15817–15823

    [13] Shen N, Massaouti M,Gokkavas M, Manceau J, Ozbay E, Kafesaki M, Koschny T, Tzortzakis S, Soukoulis C M. Optically implemen-ted broadband blueshift switch in the terahertz regime. Physical Review Letters, 2011, 106(3): 037403

    [14] Tao H, Strikwerda A C, Fan K, Padilla W J, Zhang X, Averitt R D. Recon.gurable terahertz metamaterials. Physical Review Letters, 2009, 103(14): 147401

    [15] Wu D, Fang N, Sun C, Zhang X, Padilla W J, Basov D N, Smith D R, Schultz S. Terahertz plasmonic high pass .lter. Applied Physics Letters, 2003, 83(1): 201–203

    [16] Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J, Chen H T. A metamaterial solid-state terahertz phase modulator. Nature Photonics, 2009, 3(3): 148–151

    [17] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J.Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402

    [18] Wang B, Wang L, Wang G, Huang W, Li X, Zhai X. Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber. IEEE Photonics Technology Letters, 2014, 26(2): 111–114

    [19] Wang B, Wang L, Wang G, Huang W, Li X, Zhai X. Frequency continuous tunable terahertz metamaterial absorber. Journal of Lightwave Technology, 2014, 32(6): 1183–1189

    [20] Shen N H, Kafesaki M, Koschny T, Zhang L, Economou E N, Soukoulis C M. Broadband blueshift tunable metamaterials and dual-band switches. Physical Review B, 2009, 79(16): 161102

    [21] Han N R, Chen Z C, Lim C S, Ng B, Hong M H. Broadband multi-layer terahertz metamaterials fabrication and characterization on .exible substrates. Optics Express, 2011, 19(8): 6990–6998

    [22] Li Z, Ding Y J. Terahertz broadband-stop .lters. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(1): 8500705

    [23] Li X, Yang L, Hu C, Luo X, Hong M. Tunable bandwidth of band-stop .lter by metamaterial cell coupling in optical frequency. Optics Express, 2011, 19(6): 5283–5289

    [24] Liu J, Zhang J, Cai L, Xu B, Song G. Tunable omnidirectional broadband band-stop .lter in symmetric hybrid plasmonic struc-tures. Plasmonics, 2013, 8(2): 1101–1108

    [25] Liang L, Jin B, Wu J, Huang Y, Ye Z, Huang X, Zhou D, Wang G, Jia X, Lu H, Kang L, Xu W, Chen J, Wu P. A .exible wideband bandpass terahertz .lter using multi-layer metamaterials. Applied Physics B, Lasers and Optics, 2013, 113(2): 285–290

    [26] Chiang Y, Yang C, Yang Y, Pan C, Yen T. An ultrabroad terahertz bandpass .lter based on multiple-resonance excitation of a composite metamaterial. Applied Physics Letters, 2011, 99(19): 191909

    [27] Rigi-Tamandani A, Ahmadi-Shokouh J, Tavakoli S. Wideband planar split ring resonator based metamaterials. Progress In Electromagnetics Research M, 2013, 28: 115–128

    [28] Pan Z Y, Zhang P, Chen Z C, Vienne G, Hong M H. Hybrid SRRs design and fabrication for broadband terahertz metamaterials. IEEE Photonics Journal, 2012, 4(5): 1267–1272

    [29] Zhou J, Economon E N, Koschny T, Soukoulis C M. Unifying approach to left-handed material design. Optics Letters, 2006, 31 (24): 3620–3622

    [30] Wokaun A, Gordon J P, Liao P F. Radiation damping in surface-enhanced raman scattering. Physical Review Letters, 1982, 48(14): 957–960

    [31] Novo C, Gomez D, Perez-Juste J, Zhang Z, Petrova H, Reismann M, Mulvaney P, Hartland G V. Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. Physical Chemistry Chemical Physics, 2006, 8(30): 3540–3546

    Benxin WANG, Xiang ZHAI, Guizhen WANG, Weiqing HUANG, Lingling WANG. Broadband coplane metamaterial filter based on two nested split-ring-resonators[J]. Frontiers of Optoelectronics, 2016, 9(4): 565
    Download Citation