• Frontiers of Optoelectronics
  • Vol. 4, Issue 3, 330 (2011)
Xi HUANG, Cui QIN, and Xinliang ZHANG*
Author Affiliations
  • Wuhan National Laboratory for Optoelectronics, College of Optoelectonic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-011-0220-3 Cite this Article
    Xi HUANG, Cui QIN, Xinliang ZHANG. High accuracy numerical solutions for band structures in strained quantum well semiconductor optical amplifiers[J]. Frontiers of Optoelectronics, 2011, 4(3): 330 Copy Citation Text show less
    References

    [1] Huang X, Qin C, Huang D X, Zhang X L. Local carrier recovery acceleration in quantum well semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2010, 46(10): 1047-1013

    [2] Meuer C, Schmidt-Langhorst C, Schmeckebier H, Fiol G, Arsenijevi D, Schubert C, Bimberg D. 40 Gb/s wavelength conversion via four-wave mixing in a quantum-dot semiconductor optical amplifier. Optics Express, 2011, 19(4): 3788-3798

    [3] Meuer C, Schmidt-Langhorst C, Bonk R, Schmeckebier H, Arsenijevi D, Fiol G, Galperin A, Leuthold J, Schubert C, Bimberg D. 80 Gb/s wavelength conversion using a quantum-dot semiconductor optical amplifier and optical filtering. Optics Express, 2011, 19(6): 5134-5142

    [4] Tan G L, Xu J M. Modeling of gain, differential gain, index change, and linewidth enhancement factor for strain-compensated QW’s. IEEE Photonics Technology Letters, 1998, 10(10): 1386-1388

    [5] Chang C S, Chuang S L, Lien C S. Modeling of strained quantumwell lasers with spin-orbit coupling. IEEE Journal on Selected Topics in Quantum Electronics, 1995, 1(2): 218-229

    [6] Liu Y, Tangdiongga E, Li Z, de Waardt H, Koonen A M J, Khoe G D, Shu X W, Bennion I, Dorren H J S. Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier. Journal of Lightwave Technology, 2007, 25(1): 103-108

    [7] Liu Y, Tangdiongga E, Li Z, Zhang S X, de Waardt H, Khoe G D, Dorren H J S. Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter. Journal of Lightwave Technology, 2006, 24(1): 230-236

    [8] Dong J J, Zhang X L, Xu J, Huang D X. 40 Gb/s all-optical logic NOR and OR gates using a semiconductor optical amplifier: experimental demonstration and theoretical analysis. Optics Communications, 2008, 281(6): 1710-1715

    [9] Mork J, Mecozzi A. Response function for gain and refractive index dynamics in active semiconductor waveguides. Applied Physics Letters, 1994, 65(14): 1736-1738

    [10] Nielsen ML, Mork J, Suzuki R, Sakaguchi J, Ueno Y. Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches. Optics Express, 2006, 14(1): 331-347

    [11] Yamanaka T, Yoshikuni Y, Yokoyama K, Lui W, Seki S. Theoretical study on enhanced differential gain and extremely reduced linewidth enhancement factor in quantum-well lasers. IEEE Journal of Quantum Electronics, 1993, 29(6): 1609-1616

    [12] Harrison P. Quantum wells, wires, and dots. Theoretical and Computational Physics. West Sussex, UK: John Wiley & Sons, 2001

    [13] Chuang S L. Physics of Optoelectronic Devices. New York: Wiley-Interscience, 1995

    [14] Chao C Y P, Chuang S L. Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum wells. Physical Review B: Condensed Matter and Materials Physics, 1992, 46(7): 4110-4122

    Xi HUANG, Cui QIN, Xinliang ZHANG. High accuracy numerical solutions for band structures in strained quantum well semiconductor optical amplifiers[J]. Frontiers of Optoelectronics, 2011, 4(3): 330
    Download Citation