• Journal of Advanced Dielectrics
  • Vol. 12, Issue 2, 2160019 (2022)
Z. Vakulov1、***, D. Khakhulin2, A. Geldash3, R. V. Tominov4, V. S. Klimin4, V. A. Smirnov4, and O. A. Ageev3、4
Author Affiliations
  • 1Southern Scientific Center of RAS, No. 41 Chekhov Ave., Rostov-on-Don, 344006, Russian Federation
  • 2Laboratory of Functional Nanomaterials Technology, Southern Federal University, No. 2 Shevchenko Str., Taganrog, 347922, Russian Federation
  • 3Research and Education Center “Nanotechnologies”, Southern Federal University, No. 2 Shevchenko Str., Taganrog, 347922, Russian Federation
  • 4Institute of Nanotechnologies, Electronics, and Equipment Engineering, Southern Federal University, No. 2 Shevchenko Str., Taganrog 347922, Russian Federation
  • show less
    DOI: 10.1142/S2010135X21600195 Cite this Article
    Z. Vakulov, D. Khakhulin, A. Geldash, R. V. Tominov, V. S. Klimin, V. A. Smirnov, O. A. Ageev. Impact of laser pulse repetition frequency on nucleation and growth of LiNbO3 thin films[J]. Journal of Advanced Dielectrics, 2022, 12(2): 2160019 Copy Citation Text show less
    References

    [1] N. Sezer, M. Koç. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy, 80, 105567(2020).

    [2] H. Liu, J. Zhong, C. Lee, S. W. Lee, L. Lin. A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Appl. Phys. Rev., 5, 041306(2018).

    [3] D. V. Godun, S. Bordusov, A. P. Dostanko. Systems of electronic overcurrent protection in pulse power generator operating on plasma load. Acta Polytech., 53, 152(2013).

    [4] A. Rovisco, A. Dos Santos, T. Cramer, J. Martins, R. Branquinho, H. Águas, B. Fraboni, E. Fortunato, R. Martins, R. Igreja, P. Barquinha. Piezoelectricity enhancement of nanogenerators based on PDMS and ZnSnO3 nanowires through microstructuration. ACS Appl. Mater. Interfaces, 12, 18421(2020).

    [5] Y. Wang, X. Zhang, X. Guo, D. Li, B. Cui, K. Wu, J. Yun, J. Mao, L. Xi, Y. Zuo. Hybrid nanogenerator of BaTiO3 nanowires and CNTs for harvesting energy. J. Mater. Sci., 53, 13081(2018).

    [6] V. Bedekar, J. Oliver, S. Zhang, S. Priya. Comparative study of energy harvesting from high temperature piezoelectric single crystals. Jpn. J. Appl. Phys., 48, 091406(2009).

    [7] J. A. Chaos, J. Gonzalo, C. N. Afonso, J. Perrière, M. T. García-González. Growth of stoichiometric and textured LiNbO3 films on Si by pulsed laser deposition. Appl. Phys. A, 72, 705(2001).

    [8] D. Sando, Y. Yang, C. Paillard, B. Dkhil, L. Bellaiche, V. Nagarajan. Epitaxial ferroelectric oxide thin films for optical applications. Appl. Phys. Rev., 5, 041108(2018).

    [9] M. A. Fakhri, E. T. Salim, A. W. Abdulwahhab, U. Hashim, Z. T. Salim. Optical properties of micro and nano LiNbO3 thin film prepared by spin coating. Opt. Laser Technol., 103, 226(2018).

    [10] A. Bartasyte, V. Plausinaitiene, A. Abrutis, S. Stanionyte, S. Margueron, V. Kubilius, P. Boulet, S. Hiband, P. A. Thomas. Thickness dependent stresses and thermal expansion of epitaxial LiNbO3 thin films on C-sapphire. Mater. Chem. Phys., 149–150, 622(2015).

    [11] A. P. Turygin, A. S. Abramov, D. O. Alikin, M. P. Sumets, V. A. Dybov, A. V. Kostyuchenko, E. K. Belonogov, V. M. Ievlev, V. Ya. Shur. The domain structure and local switching of LiNbO3 thin films deposited on Si (001) by radio-frequency magnetron sputtering. Ferroelectrics, 560, 86(2020).

    [12] Z. Vakulov, E. Zamburg, D. Khakhulin, A. Geldash, D. A. Golosov, S. M. Zavadski, A. V. Miakonkikh, K. V. Rudenko, A. P. Dostanko, Z. He, O. A. Ageev. Oxygen pressure influence on properties of nanocrystalline LiNbO3 films grown by laser ablation. Nanomaterials, 10, 1371(2020).

    [13] A. Tumuluri, M. S. S. Bharati, S. V. Rao, K. J. Raju. Structural, optical and femtosecond third-order nonlinear optical properties of LiNbO3 thin films. Mater. Res. Bull., 94, 342(2017).

    [14] J. Huang, D. Zhang, Z. Qi, B. Zhang, H. Wang. Hybrid Ag-LiNbO3 nanocomposite thin films with tailorable optical properties. Nanosc. Adv., 157-158, 858(2021).

    [15] W. Li, J. Cui, W. Wang, D. Zheng, L. Jia, S. Saeed, H. Liu, R. Rupp, Y. Kong, J. Xu. P-type lithium niobate thin films fabricated by nitrogen-doping. Materials, 12, 819(2019).

    [16] T. Kobata, G. Tsukahara, Y. Uesu. Fabrication of LiNbO3/LiTaO3 superlattice thin films and their second harmonic generation characteristics. Ferroelectrics, 416, 125(2011).

    [17] O. A. Ageev, B. G. Konoplev. Nanotechnology in Microelectronics(2019).

    [18] D. H. A. Blank, M. Dekkers, G. Rijnders. Pulsed laser deposition in Twente: From research tool towards industrial deposition. J. Phys. D Appl. Phys., 47, 034006(2013).

    [19] S. Shandilya, M. Tomar, K. Sreenivas, V. Gupta. Structural and interfacial defects in c-axis oriented LiNbO3 thin films grown by pulsed laser deposition on Si using Al:ZnO conducting layer. J. Phys. D Appl. Phys., 42, 095303(2009).

    [20] Y. Liu, Q. Sun, M. Shi, X. He, Z. Wei, H. Zhu, Y. Sun. Adjusting the crystal orientation of the LiNbO3 thin films on Si (111) substrate by temperature: Dissipative particle dynamics simulation. Ferroelectrics, 550, 190(2019).

    [21] M. Sumets, V. Ievlev, E. Belonogov, V. Dybov, D. Serikov, G. Kotov, A. Turygin. Oxide charge evolution under crystallization of amorphous Li–Nb–O films. J. Sci. Adv. Mater. Dev., 5, 256(2020).

    [22] H. M. Christen, G. Eres. Recent advances in pulsed-laser deposition of complex oxides. J. Phys. Condens. Matter, 20, 264005(2008).

    [23] Z. E. Vakulov, Y. N. Varzarev, E. Y. Gusev, A. V. Skrylev, A. E. Panich, A. V. Miakonkikh, I. E. Klemente, K. V. Rudenko, B. G. Konoplev, O. A. Ageev. Influence of pulsed laser deposition modes on properties of nanocrystalline LiNbO3 films. Russ. Microelectronics, 48, 59(2019).

    [24] V. A. Smirnov, R. V. Tominov, N. I. Alyab’eva, M. V. Il’ina, V. V. Polyakova, A. V. Bykov, O. A. Ageev. Atomic force microscopy measurement of the resistivity of semiconductors. Tech. Phys., 63, 1236(2018).

    [25] V. A. Smirnov, R. V. Tominov, V. I. Avilov, N. I. Alyabieva, Z. E. Vakulov, E. G. Zamburg, D. A. Khakhulin, O. A. Ageev. Investigation into the memristor effect in nanocrystalline ZnO films. Semiconductors, 53, 72(2019).

    [26] R. Burrows, A. Baron-Wiechec, C. Harrington, S. Moore, D. Chaney, T. L. Martin, J. Likonen, R. Springell, E. Surrey. The possible effect of high magnetic fields on the aqueous corrosion behaviour of Eurofer. Fus. Eng. Des., 136, 1000(2018).

    [27] W. S. Yan, R. Zhang, Z. L. Xie, X. Q. Xiu, Y. D. Zheng, Z. G. Liu. The LiNbO3 thin films deposited on the Al0.28Ga0.72N/GaN substrate. Mater. Lett., 64, 38(2010).

    [28] M. R. R. Vaziri, F. Hajiesmaeilbaigi, M. H. Maleki. Microscopic description of the thermalization process during pulsed laser deposition of aluminium in the presence of argon background gas. J. Phys. D Appl. Phys., 43, 425205(2010).

    [29] Z. E. Vakulov, E. G. Zamburg, D. A. Golosov, S. M. Zavadskiy, A. V. Miakonkikh, I. E. Clemente, K. V. Rudenko, A. P. Dostanko, O. A. Ageev. Effect of substrate temperature on the properties of LiNbO3 nanocrystalline films during pulsed laser deposition. Bull. Russ. Acad. Sci.Phys., 81, 1476(2017).

    [30] D. Y. Kim, S. G. Lee, Y. K. Park, S. J. Park. Tailoring of the preferred orientation and microstructure in the deposition of BaTiO3 thin films using pulsed laser deposition. Mater. Lett., 40, 146(1999).

    [31] N. Alyabyeva, A. Ouvrard, L. Lindfors-Vrejoiu, A. Kolomiytsev, M. Solodovnik, O. Ageev, D. McGrouther. Modified cantilevers to probe unambiguously out-of-plane piezoresponse. Phys. Rev. Mater., 6, 064402(2018).

    [32] N. Alyabyeva, A. Ouvrard, I. Lindfors-Vrejoiu, O. Ageev, D. McGrouther. Back-scattered electron visualization of ferroelectric domains in a BiFeO3 epitaxial film. Appl. Phys. Lett., 111, 222901(2017).

    [33] Z. Vakulov, M. Ivonin, E. G. Zamburg, V. S. Klimin, D. P. Volik, D. A. Golosov, S. M. Zavadskiy, A. P. Dostanko, A. V. Miakonkikh, I. E. Clemente, K. V. Rudenko, O. A. Ageev. Size effects in LiNbO3 thin films fabricated by pulsed laser deposition. J. Phys. Conf. Ser., 1124, 022032(2018).

    [34] V. Gabriel, P. Kocán, V. Holý. Effective algorithm for simulations of layer-by-layer growth during pulsed-laser deposition. Phys. Rev. E, 102, 063305(2020).

    [35] A. Adibi, K. Buse, D. Psaltis. The role of carrier mobility in holographic recording in LiNbO3. Appl. Phys. B, 72, 653(2001).

    [36] J. I. Sohn, S. N. Cha, B. G. Song, S. Lee, S. M. Kim, J. Ku, H. Kim, Y. Park, B. Choi, Z. Wang, J. Kim, K. Kim. Engineering of efficiency limiting free carriers and an interfacial energy barrier for an enhancing piezoelectric generation. Energy Environ. Sci., 6, 97(2013).

    [37] M. Alexe, S. Senz, M. A. Schubert, D. Hesse, U. Gösele. Energy harvesting using nanowires?. Adv. Mater., 20, 4021(2008).

    [38] Z. Vakulov, A. Geldash, D. Khakhulin, M. V. Il’ina, O. I. Il’in, V. S. Klimin, V. N. Dzhuplin, B. G. Konoplev, Z. He, O. A. Ageev. Piezoelectric energy harvester based on LiNbO3 thin films. Materials, 13, 3984(2020).

    Z. Vakulov, D. Khakhulin, A. Geldash, R. V. Tominov, V. S. Klimin, V. A. Smirnov, O. A. Ageev. Impact of laser pulse repetition frequency on nucleation and growth of LiNbO3 thin films[J]. Journal of Advanced Dielectrics, 2022, 12(2): 2160019
    Download Citation