[1] Chichkov B N, Momma C, Nolte S et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 63, 109-115(1996).
[2] Vorobyev A Y, Guo C L. Colorizing metals with femtosecond laser pulses[J]. Applied Physics Letters, 92, 041914(2008).
[3] Sundaram S K, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nature Materials, 1, 217-224(2002).
[4] Hu A, Rybachuk M, Lu Q B et al. Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation[J]. Applied Physics Letters, 91, 131906(2007).
[5] Hu A, Peng P, Alarifi H et al. Femtosecond laser welded nanostructures and plasmonic devices[J]. Journal of Laser Applications, 24, 042001(2012).
[6] Zheng C, Hu A M, Chen T et al. Femtosecond laser internal manufacturing of three-dimensional microstructure devices[J]. Applied Physics A, 121, 163-177(2015).
[7] Kawata S, Sun H B, Tanaka T et al. Finer features for functional microdevices[J]. Nature, 412, 697-698(2001).
[8] Zhao Y Y, Zheng M L, Dong X Z et al. Tailored silver grid as transparent electrodes directly written by femtosecond laser[J]. Applied Physics Letters, 108, 221104(2016).
[9] Blasco E, Müller J, Müller P et al. Fabrication of conductive 3D gold-containing microstructures via direct laser writing[J]. Advanced Materials, 28, 3592-3595(2016).
[10] Hu A, Li R, Bridges D et al. Photonic nanomanufacturing of high performance energy devices on flexible substrates[J]. Journal of Laser Applications, 28, 022602(2016).
[11] Zhou W, Bai S, Ma Y et al. Laser direct writing of silver metal electrodes on transparent flexible substrates with high bonding strength[J]. ACS Applied Materials & Interfaces, 8, 24887-24892(2016).
[12] Hooke R[M]. Micrographia London: J. Martyn and J. Allestry, 1665, 81-82.
[13] Fujita T, Nishihara H, Koyama J. Fabrication of micro lenses using electron-beam lithography[J]. Optics Letters, 6, 613-615(1981).
[14] Liau Z L, Diadiuk V, Walpole J N et al. Gallium phosphide microlenses by mass transport[J]. Applied Physics Letters, 55, 97-99(1989).
[15] Ma N, Ashok P C, Stevenson D J et al. Integrated optical transfection system using a microlens fiber combined with microfluidic gene delivery[J]. Biomedical Optics Express, 1, 694-705(2010).
[16] Wrzesniewski E, Eom S H, Cao W et al. Enhancing light extraction in top-emitting organic light-emitting devices using molded transparent polymer microlens arrays[J]. Small, 8, 2647-2651(2012).
[17] Kato J I, Takeyasu N, Adachi Y et al. Multiple-spot parallel processing for laser micronanofabrication[J]. Applied Physics Letters, 86, 044102(2005).
[18] Buettner A, Zeitner U D. Wave optical analysis of light-emitting diode beam shaping using microlens arrays[J]. Optical Engineering, 41, 2393-2401(2002).
[19] Siu C P B, Zeng H S, Chiao M. Magnetically actuated MEMS microlens scanner for in vivo medical imaging[J]. Optics Express, 15, 11154-11166(2007).
[20] Roulet J C, Volkel R, Herzig H P et al. Performance of an integrated microoptical system for fluorescence detection in microfluidic systems[J]. Analytical Chemistry, 74, 3400-3407(2002).
[21] Nussbaum P, Volkel R, Herzig H P et al. Design, fabrication and testing of microlens arrays for sensors and microsystems[J]. Pure and Applied Optics: Journal of the European Optical Society Part A, 6, 617-636(1997).
[22] Zheng G A, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 7, 739-745(2013).
[23] Byun M, Han W, Li B et al. Guided organization of λ-DNA into microring arrays from liquid capillary bridges[J]. Small, 7, 1641-1646(2011).
[24] Ishii Y, Koike S, Arai Y et al. Ink-jet fabrication of polymer microlens for optical-I/O chip packaging[J]. Japanese Journal of Applied Physics, 39, 1490-1493(2000).
[25] Chang C Y, Yang S Y, Huang L S et al. Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold[J]. Infrared Physics & Technology, 48, 163-173(2006).
[26] Chen F, Liu H W, Yang Q et al. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method[J]. Optics Express, 18, 20334-20343(2010).
[27] Ye X Z, Zhang F, Ma Y R et al. Brittle star-inspired microlens arrays made of calcite single crystals[J]. Small, 11, 1677-1682(2015).
[28] Hou T X, Zheng C, Bai S et al. Fabrication, characterization, and applications of microlenses[J]. Applied Optics, 54, 7366-7376(2015).
[29] Cheng Y, Tsai H L, Sugioka K et al. Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining[J]. Applied Physics A, 85, 11-14(2006).
[30] Lin C H, Jiang L, Chai Y H et al. Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing[J]. Applied Physics A, 97, 751-757(2009).
[31] Wu D, Xu J, Niu L G et al. In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting[J]. Light: Science & Applications, 4, e228(2015).
[32] Wang Z K, Sugioka K, Midorikawa K. Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing[J]. Applied Physics A, 89, 951-955(2007).
[33] Zheng C, Hu A M, Li R Z et al. Fabrication of embedded microball lens in PMMA with high repetition rate femtosecond fiber laser[J]. Optics Express, 23, 17584-17598(2015).
[34] Zheng C, Hu A M, Kihm K D et al. Femtosecond laser fabrication of cavity microball lens (CMBL) inside a PMMA substrate for super-wide angle imaging[J]. Small, 11, 3007-3016(2015).
[35] Futaba D N, Hata K, Yamada T et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes[J]. Nature Materials, 5, 987-994(2006).
[36] Wu Z S, Parvez K, Feng X L et al. Graphene-based in-plane micro-supercapacitors with high power and energy densities[J]. Nature Communications, 4, 2487(2013).
[37] El-Kady M F, Kaner R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energystorage[J]. Nature Communications, 4, 1475(2013).
[38] Gao W, Singh N, Song L et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films[J]. Nature Nanotechnology, 6, 496-500(2011).
[39] El-Kady M F, Strong V, Dubin S et al. . Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 335, 1326-1330(2012).
[40] Li R Z, Peng R, Kihm K D et al. High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes[J]. Energy & Environmental Science, 9, 1458-1467(2016).
[41] Bai S, Zhou W P, Lin Y H et al. Ultraviolet pulsed laser interference lithography and application of periodic structured Ag-nanoparticle films for surface-enhanced Raman spectroscopy[J]. Journal of Nanoparticle Research, 16, 2470-2477(2014).
[42] Li R Z, Hu A, Bridges D et al. Robust Ag nanoplate ink for flexible electronics packaging[J]. Nanoscale, 7, 7368-7377(2015).
[43] El-Kady M F, Kaner R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage[J]. Nature Communications, 4, 1475(2013).
[44] Lin J, Peng Z W, Liu Y Y et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications, 5, 5714(2014).
[45] Peng Z, Ye R, Mann J A et al. Flexible boron-doped laser-induced graphene microsupercapacitors[J]. ACS Nano, 9, 5868-5875(2015).
[46] In J B, Hsia B, Yoo J H et al. Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide[J]. Carbon, 83, 144-151(2015).
[47] Cai J G, Lv C, Watanabe A. Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment[J]. Journal of Materials Chemistry A, 4, 1671-1679(2016).
[48] Clerici F, Fontana M, Bianco S et al. In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes[J]. ACS Applied Materials & Interfaces, 8, 10459-10465(2016).
[49] Hugo E R, Brandebourg T D, Woo J G et al. Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes[J]. Environmental Health Perspectives, 116, 1642-1647(2008).
[50] Newbold R R, Jefferson W N, Padilla-Banks E. Prenatal exposure to bisphenol A at environmentally relevant doses adversely affects the murine female reproductive tract later in life[J]. Environmental Health Perspectives, 117, 879-885(2009).
[51] Kafi M A, Kim T H, An J H et al. Electrochemical cell-based chip for the detection of toxic effects of bisphenol-A on neuroblastoma cells[J]. Biosensors and Bioelectronics, 26, 3371-3375(2011).
[52] Soh N, Watanabe T, Asano Y et al. Indirect competitive immunoassay for bisphenol A, based on a surface plasmon resonance sensor[J]. Sensors and Materials, 15, 423-438(2003).
[53] Rather J A, de Wael K. Fullerene-C60 sensor for ultra-high sensitive detection of bisphenol-A and its treatment by green technology[J]. Sensors and Actuators B: Chemical, 176, 110-117(2013).
[54] Fan H X, Li Y, Wu D et al. Electrochemical bisphenol A sensor based on N-doped graphene sheets[J]. Analytica Chimica Acta, 711, 24-28(2012).
[55] Santhi V A, Sakai N, Ahmad E D, drinking water et al. 427-[J]. plasma from Malaysia with exposure assessment from consumption of drinking water. Science of the Total Environment, 428, 332-338(2012).
[56] Zhu Y Y, Cai Y L, Xu L G et al. Building an aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol A[J]. ACS Applied Materials & Interfaces, 7, 7492-7496(2015).
[57] Kim S G, Lee J S, Jun J et al. Ultrasensitive bisphenol A field-effect transistor sensor using an aptamer-modified multichannel carbon nanofiber transducer[J]. ACS Applied Materials & Interfaces, 8, 6602-6610(2016).
[58] Ragavan K V, Selvakumar L S, Thakur M S. Functionalized aptamers as nano-bioprobes for ultrasensitive detection of bisphenol-A[J]. Chemical Communications, 49, 5960-5962(2013).
[59] Cui H C, Cheng C, Lin X G et al. Rapid and sensitive detection of small biomolecule by capacitive sensing and low field AC electrothermal effect[J]. Sensors and Actuators B: Chemical, 226, 245-253(2016).
[60] Cheng C, Wang S, Wu J et al. Bisphenol-A sensors on polyimide fabricated by laser direct writing for on-site river water monitoring at attomolar concentration[J]. ACS Applied Materials & Interfaces., 8, 17784-17792(2016).