[1] YANG J G. Present situation and prospect of error compensation technology for NC machine tool [J]. Aeronautical Manufacturing Technology, 2012, (5): 40-45.(in Chinese)
[2] TANG Q C. Research on thermal error integrated prediction model of machining center [J]. Machine Tool & Hydraulics, 2010, (23): 62-64. (in Chinese)
[3] ZHANG Y, YAGN J G. Modeling for machine tool thermal error based on grey model preprocessing neural network [J]. Journal of Mechanical Engineering, 2011, 47(7): 134-139. (in Chinese)
[4] VAPNIK V N.Statistical Learning Theory[M].New York: J. Wiley, 1998.
[5] CHEN SH Y. The Nonparametric Theory of Support Vector Regression and Classification with Applications to Forecasting for Financial Markets[M].Beijing: Peking University Press, 2007. (in Chinese)
[6] DENG N Y, TIAN Y J. Support Vector Machines—Theory, Algorithms and Development [M].Beijing: Science Press, 2009, 63-80.
[7] RAMESH R, MANNAN M A. Thermal error measurement and modeling in machine tools. PartII: Hybrid Bayesian Network—support vector machine model [J]. International Journal of Machine Tools&Manufacture 2000, 40: 1257-1284.
[10] LIN SH L, LIU ZH. Parameter selection in SVM with RBF kernel function [J]. Journal of Zhejiang University of Technology, 2007, 35(2): 163-167. (in Chinese)
[11] DUAN K, KEERTHI S, POO A. Evaluation of simple performance measures for tuning SVM hyperparameters [J].Neurocomputing, 2003, 51: 41- 59.
[12] MIAO E M, NIU P CH, FEI Y T. Selecting temperature-sensitive points and modeling thermal errors of machine tools [J].Journal of the Chinese Society of Mechanical Engineers, 2011, 32: 559-565.