• Chinese Journal of Lasers
  • Vol. 51, Issue 1, 0101006 (2024)
Yue Wang*, Mofan Si, and Hao Zhang
Author Affiliations
  • College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu , China
  • show less
    DOI: 10.3788/CJL231474 Cite this Article Set citation alerts
    Yue Wang, Mofan Si, Hao Zhang. Status of Research on Colloidal Quantum Dot Lasers and Their Prospects (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0101006 Copy Citation Text show less
    References

    [1] Kim J T, Choe J H, Kim J S et al. Graphene-based plasmonic waveguide devices for electronic-photonic integrated circuit[J]. Optics & Laser Technology, 106, 76-86(2018).

    [2] Cegielski P J, Giesecke A L, Neutzner S et al. Monolithically integrated perovskite semiconductor lasers on silicon photonic chips by scalable top-down fabrication[J]. Nano Letters, 18, 6915-6923(2018).

    [3] Vannahme C, Klinkhammer S, Kolew A et al. Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate[J]. Microelectronic Engineering, 87, 693-695(2010).

    [4] Jung H, Lee M, Han C et al. Efficient on-chip integration of a colloidal quantum dot photonic crystal band-edge laser with a coplanar waveguide[J]. Optics Express, 25, 32919-32930(2017).

    [5] Xu Z S, Xia J Z, Liu X F et al. Research progress in modulation of optical properties and applications of CsPbX3 perovskite quantum dot doped glasses[J]. Laser & Optoelectronics Progress, 59, 1516013(2022).

    [6] Chandrasekar R, Lapin Z J, Nichols A et al. Photonic integrated circuits for Department of Defense-relevant chemical and biological sensing applications: state-of-the-art and future outlooks[J]. Optical Engineering, 58, 020901(2019).

    [7] Kang D, Chen H D, Yoon J. Stretchable, skin-conformal microscale surface-emitting lasers with dynamically tunable spectral and directional selectivity[J]. Applied Physics Letters, 114, 041103(2019).

    [8] Huang P, Zhang Y Y, Zhong H Z. Biexciton emission in semiconductor quantum dots[J]. Chinese Journal of Lasers, 50, 0113002(2023).

    [9] Brus L E. Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state[J]. The Journal of Chemical Physics, 80, 4403-4409(1984).

    [10] Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. Journal of the American Chemical Society, 115, 8706-8715(1993).

    [11] Hines M A, Guyot-Sionnest P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals[J]. The Journal of Physical Chemistry, 100, 468-471(1996).

    [12] Hall R N, Fenner G E, Kingsley J D et al. Coherent light emission from GaAs junctions[J]. Physical Review Letters, 9, 366-368(1962).

    [13] Xiang G H, Jia S Q, Li D P et al. Design and simulation of a colloidal quantum dot vertical-cavity surface-emitting laser[J]. Chinese Journal of Lasers, 48, 1901005(2021).

    [14] Gather M C, Yun S H. Single-cell biological lasers[J]. Nature Photonics, 5, 406-410(2011).

    [15] Leuthold J, Hoessbacher C, Muehlbrandt S et al. Plasmonic communications: light on a wire[J]. Optics & Photonics News, 24, 28-35(2013).

    [16] Shen Y L, Chen P, Hu Y Q et al. Room-temperature massive synthesis of high quality inorganic perovskite quantum dots and their application in WLED[J]. Acta Photonica Sinica, 52, 1116002(2023).

    [17] Fan T, Lü J T, Chen Y H et al. Random lasing in cesium lead bromine perovskite quantum dots film[J]. Journal of Materials Science: Materials in Electronics, 30, 1084-1088(2019).

    [18] Klimov V I, Mikhailovsky A A, Xu S et al. Optical gain and stimulated emission in nanocrystal quantum dots[J]. Science, 290, 314-317(2000).

    [19] Efros A L, Rosen M, Kuno M et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states[J]. Physical Review B, Condensed Matter, 54, 4843-4856(1996).

    [20] Huang Z G, Sun Q, Wang S S et al. Broadband tunable optical gain from ecofriendly semiconductor quantum dots with near-half-exciton threshold[J]. Nano Letters, 23, 4032-4038(2023).

    [21] Pietryga J M, Park Y S, Lim J et al. Spectroscopic and device aspects of nanocrystal quantum dots[J]. Chemical Reviews, 116, 10513-10622(2016).

    [22] Kagan C R, Lifshitz E, Sargent E H et al. Building devices from colloidal quantum dots[J]. Science, 353, aac5523(2016).

    [23] Liu H, Gong Q H, Chen J J. Colloidal quantum dot lasers and on-chip integration[J]. Chinese Journal of Lasers, 47, 0701004(2020).

    [24] Kharchenko V A, Rosen M. Auger relaxation processes in semiconductor nanocrystals and quantum wells[J]. Journal of Luminescence, 70, 158-169(1996).

    [25] Chepic D I, Efros A L, Ekimov A I et al. Auger ionization of semiconductor quantum drops in a glass matrix[J]. Journal of Luminescence, 47, 113-127(1990).

    [26] Zhao Y M, Riemersma C, Pietra F et al. High-temperature luminescence quenching of colloidal quantum dots[J]. ACS Nano, 6, 9058-9067(2012).

    [27] Adachi M M, Fan F J, Sellan D P et al. Microsecond-sustained lasing from colloidal quantum dot solids[J]. Nature Communications, 6, 8694(2015).

    [28] Rowland C E, Schaller R D. Exciton fate in semiconductor nanocrystals at elevated temperatures: hole trapping outcompetes exciton deactivation[J]. The Journal of Physical Chemistry C, 117, 17337-17343(2013).

    [29] Ivanov S A, Nanda J, Piryatinski A et al. Light amplification using inverted core/shell nanocrystals:   towards lasing in the single-exciton regime[J]. The Journal of Physical Chemistry B, 108, 10625-10630(2004).

    [30] Klimov V I, Ivanov S A, Nanda J et al. Single-exciton optical gain in semiconductor nanocrystals[J]. Nature, 447, 441-446(2007).

    [31] Cragg G E, Efros A L. Suppression of auger processes in confined structures[J]. Nano Letters, 10, 313-317(2010).

    [32] Wang Y, Leck K S, Ta V D et al. Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi-continuous pumping[J]. Advanced Materials, 27, 169-175(2015).

    [33] Park Y S, Bae W K, Baker T et al. Effect of auger recombination on lasing in heterostructured quantum dots with engineered core/shell interfaces[J]. Nano Letters, 15, 7319-7328(2015).

    [34] Dang C, Lee J, Breen C et al. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films[J]. Nature Nanotechnology, 7, 335-339(2012).

    [35] Zhang L, Liao C, Lü B H et al. Single-mode lasing from “giant” CdSe/CdS core-shell quantum dots in distributed feedback structures[J]. ACS Applied Materials & Interfaces, 9, 13293-13303(2017).

    [36] Melnychuk C, Guyot-Sionnest P. Slow auger relaxation in HgTe colloidal quantum dots[J]. The Journal of Physical Chemistry Letters, 9, 2208-2211(2018).

    [37] Geiregat P, Houtepen A J, Sagar L K et al. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots[J]. Nature Materials, 17, 35-42(2018).

    [38] Chien H C, Cheng C Y, Mao M H. Continuous wave operation of SiO2 sandwiched colloidal CdSe/ZnS quantum-dot microdisk lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 1500405(2017).

    [39] Wang L, Meng L H, Chen L et al. Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in situ fabricated perovskite quantum dots[J]. The Journal of Physical Chemistry Letters, 10, 3248-3253(2019).

    [40] Fan F J, Voznyy O, Sabatini R P et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy[J]. Nature, 544, 75-79(2017).

    [41] Moon H J, Chough Y T, An K. Cylindrical microcavity laser based on the evanescent-wave-coupled gain[J]. Physical Review Letters, 85, 3161-3164(2000).

    [42] Howell B F, Kuzyk M G. Lasing action and photodegradation of disperse orange 11 dye in liquid solution[J]. Applied Physics Letters, 85, 1901-1903(2004).

    [43] Zheng Q D, Zhu H M, Chen S C et al. Frequency-upconverted stimulated emission by simultaneous five-photon absorption[J]. Nature Photonics, 7, 234-239(2013).

    [44] Schäfer J, Mondia J P, Sharma R et al. Quantum dot microdrop laser[J]. Nano Letters, 8, 1709-1712(2008).

    [45] Li M J, Zhi M, Zhu H et al. Ultralow-threshold multiphoton-pumped lasing from colloidal nanoplatelets in solution[J]. Nature Communications, 6, 8513(2015).

    [46] Maskoun J, Gheshlaghi N, Isik F et al. Optical microfluidic waveguides and solution lasers of colloidal semiconductor quantum wells[J]. Advanced Materials, 33, 2007131(2021).

    [47] Tan M J H, Wang Y, Chan Y. Solution-based green amplified spontaneous emission from colloidal perovskite nanocrystals exhibiting high stability[J]. Applied Physics Letters, 114, 183101(2019).

    [48] Wu Y T, Huang Z G, Sun Q et al. A new generation of liquid lasers from engineered semiconductor nanocrystals with giant optical gain[J]. Laser & Photonics Reviews, 17, 2200703(2023).

    [49] Yakunin S, Protesescu L, Krieg F et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites[J]. Nature Communications, 6, 8056(2015).

    [50] Wang Y, Li X M, Song J Z et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics[J]. Advanced Materials, 27, 7101-7108(2015).

    [51] Wang Y, Li X M, Nalla V et al. Solution-processed low threshold vertical cavity surface emitting lasers from all-inorganic perovskite nanocrystals[J]. Advanced Functional Materials, 27, 1605088(2017).

    [52] Gao W, Wang T, Xu J T et al. Robust and flexible random lasers using perovskite quantum dots coated nickel foam for speckle-free laser imaging[J]. Small, 17, e2103065(2021).

    [53] Wu Z Y, Chen Y Y, Lin L J et al. Room-temperature near-infrared random lasing with tin-based perovskites prepared by CVD processing[J]. The Journal of Physical Chemistry C, 125, 5180-5184(2021).

    [54] Koyanagi T, Kapil G, Ogomi Y et al. Hot-injection and ultrasonic irradiation syntheses of Cs2SnI6 quantum dot using Sn long-chain amino-complex[J]. Journal of Nanoparticle Research, 22, 69(2020).

    [55] Gao S, Zhang C F, Liu Y J et al. Lasing from colloidal InP/ZnS quantum dots[J]. Optics Express, 19, 5528-5535(2011).

    [56] Zhang H, Hu N, Zeng Z P et al. High-efficiency green InP quantum dot-based electroluminescent device comprising thick-shell quantum dots[J]. Advanced Optical Materials, 7, 1801602(2019).

    [57] Mi Y, Jiang A Q, Kong L et al. Amplified spontaneous emission and lasing from Zn-processed AgIn5S8 core/shell quantum dots[J]. ACS Applied Materials & Interfaces, 15, 19330-19336(2023).

    [58] Wei H Y, Wei Q, Fang F et al. Blue lasing from heavy-metal-free colloidal quantum dots[J]. Laser & Photonics Reviews, 17, 2200557(2023).

    [59] Huang Z G, Sun Q, Zhao S Y et al. Deciphering ultrafast carrier dynamics of eco-friendly ZnSeTe-based quantum dots: toward high-quality blue-green emitters[J]. The Journal of Physical Chemistry Letters, 12, 11931-11938(2021).

    [60] Li C L, Nishikawa K, Ando M et al. Synthesis of Cd-free water-soluble ZnSe1-xTex nanocrystals with high luminescence in the blue region[J]. Journal of Colloid and Interface Science, 321, 468-476(2008).

    [61] Jang E P, Han C Y, Lim S W et al. Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters[J]. ACS Applied Materials & Interfaces, 11, 46062-46069(2019).

    [62] Lee S H, Han C Y, Song S W et al. ZnSeTe quantum dots as an alternative to InP and their high-efficiency electroluminescence[J]. Chemistry of Materials, 32, 5768-5775(2020).

    [63] Kim T, Kim K H, Kim S et al. Efficient and stable blue quantum dot light-emitting diode[J]. Nature, 586, 385-389(2020).

    [64] Kim Y H, Yoon S Y, Lee Y J et al. Compositional and heterostructural tuning in red-emissive ternary ZnSeTe quantum dots for display applications[J]. ACS Applied Nano Materials, 6, 19947-19954(2023).

    [65] Wu B Q, Zhao S Y, Zhang M S et al. Excited-state regulation in eco-friendly ZnSeTe-based quantum dots by cooling engineering[J]. Science China Materials, 65, 1569-1576(2022).

    [66] Hayashi K, Nakanotani H, Inoue M et al. Suppression of roll-off characteristics of organic light-emitting diodes by narrowing current injection/transport area to 50 nm[J]. Applied Physics Letters, 106, 093301(2015).

    [67] Zou C, Liu Y, Ginger D S et al. Suppressing efficiency roll-off at high current densities for ultra-bright green perovskite light-emitting diodes[J]. ACS Nano, 14, 6076-6086(2020).

    [68] Nakanotani H, Oyamada T, Kawamura Y et al. Injection and transport of high current density over 1000 A/cm2 in organic light emitting diodes under pulse excitation[J]. Japanese Journal of Applied Physics, 44, 3659(2005).

    [69] Roh J, Park Y S, Lim J et al. Optically pumped colloidal-quantum-dot lasing in LED-like devices with an integrated optical cavity[J]. Nature Communications, 11, 271(2020).

    [70] Ahn N, Park Y S, Livache C et al. Optically excited lasing in a cavity-based, high-current-density quantum dot electroluminescent device[J]. Advanced Materials, 35, 2206613(2023).

    [71] Lim J, Park Y S, Klimov V I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping[J]. Nature Materials, 17, 42-49(2018).

    [72] Jung H, Park Y S, Ahn N et al. Two-band optical gain and ultrabright electroluminescence from colloidal quantum dots at 1000 A·cm-2[J]. Nature Communications, 13, 3734(2022).

    [73] Ahn N, Livache C, Pinchetti V et al. Electrically driven amplified spontaneous emission from colloidal quantum dots[J]. Nature, 617, 79-85(2023).

    [74] Taghipour N, Dalmases M, Whitworth G L et al. Colloidal quantum dot infrared lasers featuring sub-single-exciton threshold and very high gain[J]. Advanced Materials, 35, 2207678(2023).

    [75] Taghipour N, Dalmases M, Whitworth G L et al. Ultrafast cascade charge transfer in multibandgap colloidal quantum dot solids enables threshold reduction for optical gain and stimulated emission[J]. Nano Letters, 23, 8637-8642(2023).

    [76] Liu Y, Li Y X, Gao K M et al. Sub-single-exciton optical gain in lead halide perovskite quantum dots revealed by exciton polarization spectroscopy[J]. Journal of the American Chemical Society, 145, 25864-25873(2023).

    Yue Wang, Mofan Si, Hao Zhang. Status of Research on Colloidal Quantum Dot Lasers and Their Prospects (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0101006
    Download Citation