• Acta Photonica Sinica
  • Vol. 46, Issue 12, 1201003 (2017)
CHENG Zhi1、2、*, HE Feng1, JING Xu1, ZHANG Si-long1, and HOU Zai-hong1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/gzxb20174612.1201003 Cite this Article
    CHENG Zhi, HE Feng, JING Xu, ZHANG Si-long, HOU Zai-hong. Denoising Lidar Signal Based on Ensemble Empirical Mode Decomposition and Singular Value Decomposition[J]. Acta Photonica Sinica, 2017, 46(12): 1201003 Copy Citation Text show less
    References

    [1] NAKATA K, TOMITA A, FUJIWARA M, et al. Intensity fluctuation of a gain-switched semiconductor laser for quantum key distribution systems[J]. Optics Express, 2017, 25(2): 622-634.

    [3] LIU Zhi-qing, LI Peng-cheng, CHEN Xiao-wei, et al. Classification of airborne LiDAR point cloud data based on information vector machine[J]. Optics and Precision Engineering, 2016, 24(1): 210-219.

    [4] WANG Guo-cong, WANG Jian-li, ZHANG Zhen-duo, et al. Influence on space target polarization imaging detection resulting from atmospheric turbulence[J]. Acta Photonica Sinica, 2016, 45(4): 0410003.

    [5] JING Xu, WU Yi, HOU Zai-hong, et al. Study of irradiance fluctuations for laser beam propagation in atmosphere[J]. Acta Optica Sinica, 2010, 30(11): 3110-3116.

    [6] VOYEZ J, ROBERT C, CONAN J -M, et al. First on-sky results of the CO-SLIDAR C2n profiler[J]. Optics Express, 2014, 22(9): 10948-10967.

    [7] RAJBHANDARI S, GHASSEMLOOY Z, HAIGH P A, et al. Experimental error performance of modulation schemes under a controlled laboratory turbulence FSO channel[J]. Journal of Lightwave Technology, 2015, 33(1): 244-250.

    [8] LI F, HOU Z H, WU Y. Experiment and evaluation of bit error rate for free-communication in turbulence atmosphere[J]. Optics & Laser Technology, 2013, 366: 58-62.

    [9] SUN Gang, WENG Ning-quan, XIAO Li- ming, et al. Profile and character of atmospheric structure constants of refractive index[J]. High Power Laser Part Beams, 2005, 17(4): 485-490.

    [10] AVILA R, VERNIN J, SNCHEZ L J. Atmospheric turbulence and wind profiles monitoring with generalized scidar[J]. Astronomy & Astrophysics, 2001, 369(1): 364-372.

    [11] BUTTERLEY T, WILSON R W, SARAZIN M. Determination of the profile of atmospheric optical turbulence strength from SLODAR data[J]. Mon Not R Astron Soc, 2006, 369: 835-845.

    [12] ELS S G, SCHCK M, SEGUEL J, et al. Study on the precision of the multiaperture scintillation sensor turbulence profiler (MASS) employed in the site testing campaign for the Thirty Meter Telescope[J]. Applied Optics, 2008, 47(14): 2610-2618.

    [13] GIMMESTAD G, ROBERTS D, STEWART J, et al. Development of a lidar technique for profiling optical turbulence[J]. Optical Engineering, 2012, 51(10): 101713.

    [14] JING Xu, HOU Zai-hong, WU Yi, et al. Development of a differential column image motion light detection and ranging for measuring turbulence profiles[J]. Optics Letters, 2013, 38(17): 3445-3447.

    [15] CHENG Zhi, HE Feng, JING Xu, et al. Improved retrieval method of turbulence profile from differential column image motion light detection and rangings[J]. Acta Optica Sinica, 2016, 36(4): 0401004.

    [16] CHENG Zhi, TAN Feng-fu, JING Xu, et al. Retrieval of C2n profile from differential column image motion lidar using the regularization method[J]. Chinese Optics Letters, 2017, 15(2): 020101.

    [17] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London, Series A, 1998, 454: 903-995.

    [18] WANG Shu-tao, LI Mei-mei, LI Pan, et al. Signal processing method based on empirical mode decomposition in the SO2 concentration monitoring[J]. Acta Photonica Sinica, 2014, 43(2): 0228002.

    [19] WU Z H, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1: 1-41.

    [20] TORRS M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]. ICASSP, 2011, 125(3): 4144-4147.

    [21] RENINGER P A, MARTELET G, DEPARIS J, et al. Singular value decomposition as a denoising tool for airborne time domain electromagnetic data[J]. Journal of Applied Geophysics, 2011, 75(2): 264-276.

    [22] ZHAO Xue-zhi, YE Bang-yan. The similarity of signal processing effect between SVD and wavelet transform and its mechanism analysis[J]. Acta Electronica Sinica, 2008, 36(8): 1582-1589.

    [23] ZHANG Lei, PENG Wei-cai, YUAN Chun-hui, et al. Bang-yan. An improved method for noise reduction based on singular value decomposition[J]. Chinese Journal of Ship Research, 2012, 7(5): 83-88.

    [24] JIA Rui-sheng, ZHAO Tong-bin, SUN Hong-mei, et al. Micro-seismic signal denoising method based on empirical mode decomposition and independent component analysis[J]. Chinese Journal of Geophysics, 2015, 58(3): 1013-1023.

    CHENG Zhi, HE Feng, JING Xu, ZHANG Si-long, HOU Zai-hong. Denoising Lidar Signal Based on Ensemble Empirical Mode Decomposition and Singular Value Decomposition[J]. Acta Photonica Sinica, 2017, 46(12): 1201003
    Download Citation