• Journal of Terahertz Science and Electronic Information Technology
  • Vol. 20, Issue 1, 58 (2022)
ZHANG Yuting* and CUI Wanzhao
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.11805/tkyda2021033 Cite this Article
    ZHANG Yuting, CUI Wanzhao. Research progress of secondary electron emission effect in output window of vacuum electronic devices[J]. Journal of Terahertz Science and Electronic Information Technology , 2022, 20(1): 58 Copy Citation Text show less
    References

    [2] DAMMERTZ G,ALBERTI S,ARNOLD A,et al. Development of a 140 GHz 1 MW continuous wave gyrotron for the W7-X stellarator[J]. IEEE Transaction on Plasma Science, 2002,30(3):808-818.

    [3] DENISOV G G,LTITVAK A G,MYASNIKOV V E,et al. Recent results of development in Russia of high power gyrotrons[C]//2007 IEEE International Vacuum Electronics Conference. Kitakyushu,Japan:IEEE, 2007:43-44.

    [4] CAUFFMAN S. Preliminary design of a 105-140 GHz step-tunable 1 MW gyrotron[C]// 2007 IEEE International Vacuum Electronics Conference. Kitakyushu,Japan:IEEE, 2007:255-256.

    [5] ANDERSON J P,SHAPIRO M A,TEMKIN R J,et al. Studies of the 1.5 MW 110 GHz gyrotron experiment[J]. IEEE Transaction on Plasma Science, 2004,32(3):877-883.

    [6] KASUGAI A,KAJIWARA K,TAKAHASHI K,et al. Steady state operation of high power gyrotron for ITER[C] // 2007 IEEE International Vacuum Electronics Conference. Kitakyushu,Japan:IEEE, 2007:37-38.

    [7] ROITMAN A,SWEENEY D,MATHIESON P,et al. Compact high power Ka-band extended interaction klystron for terrestrial and space applications[C]// 2006 IEEE International Vacuum Electronics Conference. Monterey,CA:IEEE, 2006:71-72.

    [14] LIU S G,YUAN X S,FU W J,et al. The coaxial gyrotron with two electron beamsⅠlinear theory and nonlinear theory[J].Physics of Plasmas, 2007,14(10):103113-1-103113-7.

    [15] LIU Yinghui,LEI Chaojun,NIU Xinjian,et al. Study and design of cavity and MIG of a high power 140 GHz gyrotron at UESTC[J]. Physics of Plasmas, 2019,26(3):033106-1-033106-7.

    [16] LIU Yinghui,LIU Qiao,NIU Xinjian,et al. Analysis and design of the resonator in a 110 GHz gyrotron oscillator[J]. Journal of Fusion Energy, 2015,34(3):456-462.

    [17] LIU Qiao,LIU Yinghui,CHEN Zhaowei,et al. Investigation on heat transfer analysis and its effect on a multi-mode,beam-wave interaction for a 140 GHz,MW-class gyrotron[J]. Physics of Plasmas, 2018,25(4):043101-1-043101-7.

    [22] KISHEK R A,LAU Y Y. Interaction of multipactor discharge and RF circuits[J]. Physical Review Letters, 1995,75(6):1218-1222.

    [23] KISHEK R A,LAU Y Y. Multipactor discharge on a dielectric[J]. Physical Review Letters, 1998,80(1):193-196.

    [24] KIM H C,VERBONCOEUR J P. Time-dependent physics of a single-surface multipactor discharge[J]. Physics of Plasmas,2005,12(12):123504.

    [27] KIM H C,VERBONCOEUR J P,LAU Y Y. Modeling RF window breakdown:from vacuum multipactor to RF plasma[J].IEEE Transactions on Dielectrics and Electrical Insulation, 2007,14(4):766-772.

    [33] ZHANG Xue,TANG Haobei,CHEN Xuyuan,et al. Multipactor discharge in circular waveguide window[J]. Physics of Plasmas, 2020,27(4):043504-1-043504-9.

    [35] RENOUD R,MADY F,ATTARD C,et al. Secondary electron emission of an insulating target induced by a well-focused electron beam—Monte Carlo simulation study[J]. Physica Status Solidi A, 2004,201(9):2119-2133.

    [39] SCHAUB S C,SHAPIRO M A,TEMKIN R J. Measurement of dielectric multipactor thresholds at 110 GHz[J]. Physical Review Letters. 2019,123(17):175001.

    [40] MICHIZONO S,KINBARA A,SAITO Y,et al. TiN film coatings on alumina radio frequency windows[J]. Journal of Vacuum Science & Technology A, 1992,10(4):1180-1184.

    [41] RUIZ A,ROMáN E,LOZANO P,et al. UHV reactive evaporation growth of titanium nitride thin films,looking for multipactor effect suppression in space applications[J]. Vacuum, 2007,81(11-12):1493-1497.

    [42] ORLOV O S,MESHKOV I N,RUDAKOV A Y,et al. Secondary electron yield from stainless steel surface coated with titanium nitride[J]. Physics of Particles and Nuclei Letters, 2014,11(5):632-635.

    [43] SAITO Y,MATUDA N,ANAMI S,et al. Breakdown of alumina RF windows[J]. IEEE Transactions on Electrical Insulation,1989,24(6):1029–1032.

    [45] NEUBER A A,EDMISTON G F,KRILE J T,et al. Interface breakdown during high-power microwave transmission[J]. IEEE Transactions on Magnetics, 2007,43(1):496-500.

    [46] CHANG C,LIU G Z,HUANG H J,et al. Suppressing high-power microwave dielectric multipactor by the sawtooth surface[J].Physics of Plasmas, 2009,16(8):083501.

    [47] CHANG C,LIU G Z,FANG J Y,et al. Field distribution,HPM multipactor and plasma discharge on the periodic triangular surface[J]. Laser and Particle Beams, 2010,28(1):185–193.

    [48] CHANG C,LIU G Z,TANG C X,et al. Review of recent theories and experiments for improving high-power microwave window breakdown thresholds[J]. Physics of Plasmas, 2011,18(5):055702.

    [49] CHANG C,LIU G Z,HUANG H J,et al. The effect of grooved surface on dielectric multipactor[J]. Journal of Applied Physics,2009,105(12):174-184.

    [50] LI S,CHANG C,WANG J G,et al. Tracking multiple generation and suppression of secondary electrons on periodic triangular surface[J]. Physics of Plasmas, 2013,20(12):1172–1180.

    [52] CHENG G X,CAI D,HONG Z Q. Variation in time lags of vacuum surface flashover utilizing a periodically grooved dielectric[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013,20(5):1942–1950.

    [56] CHANG Chao,VERBONCOEUR John,TANTAWI Sami,et al. The effects of magnetic field on single-surface resonant

    [57] CAI L B,WANG J G,ZHU X Q,et al. Suppression of multipactor discharge on a dielectric surface by an external magnetic field[J]. Physics of Plasmas, 2011,18(7):073504.

    ZHANG Yuting, CUI Wanzhao. Research progress of secondary electron emission effect in output window of vacuum electronic devices[J]. Journal of Terahertz Science and Electronic Information Technology , 2022, 20(1): 58
    Download Citation