[1] 1袁昌盛, 付金华. 国际上微型飞行器的研究进展与关键问题[J]. 航空兵器, 2005, 12(6): 50-53. doi: 10.3969/j.issn.1673-5048.2005.06.013YUANCH SH, FUJ H. Development and key technique of micro air vehicles[J]. Aero Weaponry, 2005, 12(6): 50-53. (in Chinese). doi: 10.3969/j.issn.1673-5048.2005.06.013
[2] R MADANGOPAL, Z A KHAN, S K AGRAWAL. Biologically inspired design of small flapping wing air vehicles using four-bar mechanisms and quasi-steady aerodynamics. Journal of Mechanical Design, 127, 809-816(2005).
[3] R MADANGOPAL, Z A KHAN, S K AGRAWAL. Energetics-based design of small flapping-wing micro air vehicles. ASME Transactions on Mechatronics, 11, 433-438(2006).
[4] L LIU, H D LI, H S ANG et al. Numerical investigation of flexible flapping wings using computational fluid dynamics/computational structural dynamics method. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 232, 85-95(2018).
[5] T VAN TRUONG, Q V NGUYEN, H LEE. Bio-inspired flexible flapping wings with elastic deformation. Aerospace, 4, 37(2017).
[6] G J ZHANG, J H SUN, D Z CHEN et al. Flapping motion measurement of honeybee bilateral wings using four virtual structured-light sensors. Sensors and Actuators A: Physical, 148, 19-27(2008).
[7] 7高峰, 蒋国江, 丰志伟, 等. 仿生变形飞行器多体动力学建模与仿真[J]. 系统仿真技术, 2020, 16(1): 32-36, 45. doi: 10.3969/j.issn.1673-1964.2020.01.008GAOF, JIANGG J, FENGZH W, et al. Dynamic modeling and simulation of morphing aerocraft[J]. System Simulation Technology, 2020, 16(1): 32-36, 45. (in Chinese). doi: 10.3969/j.issn.1673-1964.2020.01.008
[8] 8周超英, 朱建阳, 汪超, 等. 柔性扑翼气动性能的数值研究[J]. 工程力学, 2013, 30(5): 13-18. doi: 10.6052/j.issn.1000-4750.2012.01.0028ZHOUCH Y, ZHUJ Y, WANGCH, et al. Numerical study on the effect of flexiblity of a flapping wing on its aerodynamic performance[J]. Engineering Mechanics, 2013, 30(5): 13-18. (in Chinese). doi: 10.6052/j.issn.1000-4750.2012.01.0028
[9] 9段文博, 昂海松, 肖天航. 主动变形扑翼飞行器的设计和风洞测力试验研究[J]. 航空学报, 2013, 34(3): 474-486.DUANW B, ANGH S, XIAOT H. Design and wind tunnel test of an active morphing wing ornithopter[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3): 474-486. (in Chinese)
[10] 10付鹏. 微型扑翼飞行器风洞实验方法与应用研究[D]. 西安: 西北工业大学, 2017.FUP. Research on Wind Tunnel Experimental Method and Application of Flapping-Wing Micro Air Vehicle[D]. Xi'an: Northwestern Polytechnical University, 2017. (in Chinese)
[11] M PERCIN, B W VAN OUDHEUSDEN, G C H E DE CROON et al. Force generation and wing deformation characteristics of a flapping-wing micro air vehicle ‘DelFly II’ in hovering flight. Bioinspiration & Biomimetics, 11(2016).
[12] H N WEHMANN, L HEEPE, S N GORB et al. Local deformation and stiffness distribution in fly wings. Biology Open, 8(2019).
[13] 13王超. 基于光纤光栅传感器的软体机械臂三维形状检测方法[J]. 化工自动化及仪表, 2015, 42(10): 1130-1133. doi: 10.3969/j.issn.1000-3932.2015.10.016WANGCH. 3D shapes detecting method of soft manipulator based on fiber Bragg grating sensor[J]. Control and Instruments in Chemical Industry, 2015, 42(10): 1130-1133. (in Chinese). doi: 10.3969/j.issn.1000-3932.2015.10.016
[14] J C YI, X J ZHU, H S ZHANG et al. Spatial shape reconstruction using orthogonal fiber Bragg grating sensor array. Mechatronics, 22, 679-687(2012).
[15] R J ROESTHUIS, M KEMP, J J VAN DEN DOBBELSTEEN et al. Three-dimensional needle shape reconstruction using an array of fiber Bragg grating sensors. IEEE/ASME Transactions on Mechatronics, 19, 1115-1126(2014).
[16] 16祝连庆, 孙广开, 李红, 等. 智能柔性变形机翼技术的应用与发展[J]. 机械工程学报, 2018, 54(14): 28-42. doi: 10.3901/JME.2018.14.028ZHUL Q, SUNG K, LIH, et al. Intelligent and flexible morphing wing technology: a review[J]. Journal of Mechanical Engineering, 2018, 54(14): 28-42. (in Chinese). doi: 10.3901/JME.2018.14.028
[17] W ZHUANG, G K SUN, H LI et al. FBG based shape sensing of a silicone octopus tentacle model for soft robotics. Optik, 165, 7-15(2018).
[18] 18张俊康, 孙广开, 李红, 等. 变形机翼薄膜蒙皮形状监测光纤传感方法研究[J]. 仪器仪表学报, 2018, 39(2): 66-72. doi: 10.13873/J.1000-9787(2018)10-0019-03ZHANGJ K, SUNG K, LIH, et al. Optical fiber shape sensing of polyimide skin for flexible morphing wing[J]. Chinese Journal of Scientific Instrument, 2018, 39(2): 66-72. (in Chinese). doi: 10.13873/J.1000-9787(2018)10-0019-03
[19] 19曲道明, 孙广开, 李红, 等. 变形机翼柔性蒙皮形状光纤传感及重构方法[J]. 仪器仪表学报, 2018, 39(1): 144-151.QUD M, SUNG K, LIH, et al. Optical fiber sensing and reconstruction method for morphing wing flexible skin shape[J]. Chinese Journal of Scientific Instrument, 2018, 39(1): 144-151. (in Chinese)
[20] N RAHMAN, N DEATON, J SHENG et al. Modular FBG bending sensor for continuum neurosurgical robot. IEEE Robotics and Automation Letters, 4, 1424-1430(2019).
[21] S JÄCKLE, T EIXMANN, H SCHULZ-HILDEBRANDT et al. Fiber optical shape sensing of flexible instruments for endovascular navigation. International Journal of Computer Assisted Radiology and Surgery, 14, 2137-2145(2019).
[22] 22郭永兴, 杨跃辉, 熊丽, 等. 植入光纤布拉格光栅的不同杨氏模量软体材料弯曲测量响应特性[J]. 光学 精密工程, 2020, 28(8): 1634-1643. doi: 10.3788/OPE.20202808.1634GUOY X, YANGY H, XIONGL, et al. Response characteristics of fiber Bragg gratings embedded in soft materials with different Young's modulus for bending measurement[J]. Opt. Precision Eng., 2020, 28(8): 1634-1643. (in Chinese). doi: 10.3788/OPE.20202808.1634
[23] 23郭永兴, 杨跃辉, 熊丽. 双层正交的光纤布拉格光栅柔性形状传感技术[J]. 光学 精密工程, 2021, 29(10): 2306-2315. doi: 10.37188/OPE.20212910.2306GUOY X, YANGY H, XIONGL. Double-layer orthogonal fiber Bragg gratings flexible shape sensing technology[J]. Opt. Precision Eng., 2021, 29(10): 2306-2315. (in Chinese). doi: 10.37188/OPE.20212910.2306
[24] 24张兴伟, 周超英, 谢鹏. 扑翼柔性变形对悬停气动特性影响的数值研究[J]. 哈尔滨工业大学学报, 2012, 44(1): 115-119. doi: 10.11918/j.issn.0367-6234.2012.01.023ZHANGX W, ZHOUCH Y, XIEP. Numerical study on the effect of flapping wing deformation on aerodynamic performance in hovering flight[J]. Journal of Harbin Institute of Technology, 2012, 44(1): 115-119. (in Chinese). doi: 10.11918/j.issn.0367-6234.2012.01.023