• Infrared Technology
  • Vol. 43, Issue 2, 104 (2021)
Xin TONG*, Xiaoping CHEN, Jiapeng LI, Ming XIA, Yang HUAI, and Junyuan CHEN
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    TONG Xin, CHEN Xiaoping, LI Jiapeng, XIA Ming, HUAI Yang, CHEN Junyuan. Micro-coolers Based on MEMS Technology[J]. Infrared Technology, 2021, 43(2): 104 Copy Citation Text show less
    References

    [2] Esashi M, Ono T. Micro-nano electromechanical system by bulk silicon micromachining[J]. Optics and Precision Engineering, 2002, 10(6): 608-613.

    [8] Christofferson J, Vashaee D, Shakouri A. Thermal characterization of thin film superlattice micro refrigerators[C]//IEEE SEMI-THERM Symposium, 2000: 49-54.

    [9] Christofferson J, Ezzahri Y, Shakouri A. Transient thermal imaging of pulsed- operation superlattice micro-refrigerators[C]// IEEE SEMI- THERM Symposium, 2009: 45-49.

    [10] ZENG Gehong, FAN Xiaofeng, LaBounty C, et al. Cooling power density of SiGe/Si superlattice micro refrigerators[J]. Materials Research Society, 2004, 793: 221-227.

    [11] YAO D J, KIM C J, CHEN G. MEMS thermoelectric micro-cooler[C]//International Conference on Thermoelectric, 2001: 401-404.

    [12] Goncalves L M, Couto C, Correia J H. Flexible thin-film planar peltier microcooler[C]//International Conference on Thermoelectrics, 2006: 327-331.

    [13] Ronggui Y, GANG C, Snyder G J, et al. Multistage thermoelectric micro coolers[C]//Inter Society Conference on Thermal Phenomena, 2002: 323-329.

    [15] Little W A. Design considerations for microminiature refrigerators using laminar flow heat exchangers[J]. NSB Speaial Publication, 1981, 607: 154-161.

    [16] FAN Zhonghui, D Harrison. Micromachining of capillary electro-phoresis injectors and separators on glass chips and evaluation of flow at capillary intersections[J]. Analytical Chemistry, 1994, 66: 177-184.

    [17] P P P M Lerou, G C F Venhorst, C F Berends, et al. Fabrication of a micro cryogenic cold stage using MEMS-technology[J]. Journal of Micromechanics and Microengineering, 2006, 16: 1919-1925.

    [18] CAO H S, Mudaliar A V, Derking J H, et al. Design and optimization of a two-stage 28 K Joule–Thomson microcooler[J]. Cryogenics, 2012, 52: 51-57.

    [19] CAO H S, Vanapalli S, Holland H J, et al. A micromachined Joule–Thomson cryogenic cooler with parallel two-stage expansion[J]. International Journal of Refrigeration, 2016, 69: 223-231.

    [20] CAO H S, Vanapalli S, Holland H J, et al. Characterization of a thermoelectric Joule–Thomson hybrid microcooler[J]. Cryogenics, 2016, 77: 36-42.

    [21] Little W A. Microminiature refrigeration[J]. American Institute of Physics, 1984: 661-680.

    [22] ZHU Weibin, J W Michael, F N Gregory, et al. A Si/Glass bulk -micromachined cryogenic heat exchanger for high heat loads: fabrication, test, and application results[J]. Journal of Microelectromechanical System, 2010, 19(1): 38-47.

    [23] ZHU Weibin, Michael J W, Gregory F N, et al. A Joule-Thomson cooling system with a Si/Glass heat exchanger for 0.1-1 W heat loads[C]//Transducers, 2009: 2417-2420.

    [24] ZHU Weibin, Michael J W, Daniel W H, et al. Two approaches to micromachining Si heat exchanger for Joule-Thomson cryosurgical probes[C]//MEMS, 2007: 317-320.

    [25] ZHU Weibin, Michael J W, Gregory F N, et al. A perforated plate stacked Si/Glass heat exchanger with In-SITU temperature for Joule-Thomson coolers[C] //MEMS, 2008: 844-847.

    [26] Lerou P P P M, Brake H J M, Holland H J, et al. Insight into clogging of micromachined cryogenic coolers[J]. Applied Physics Letters, 2007, 90: 102-104.

    [27] Tsai H L, Le P T. Self-sufficient energy recycling of light emitter diode/thermoelectric generator module for its active-cooling application[J]. Energy Conversion and Management, 2016, 118: 170-178.

    [28] LIN Shumin, MA Ming, WANG Jun, et al. Experiment investigation of a two-stage thermoelectric cooler under current pulse operation[J]. Applied Energy, 2016, 180: 628-636.

    [29] ZHAO Dongliang, TAN Gang. Experimental evaluation of a prototype thermoelectric system integrated with PCM (Phase Change Material) for space cooling[J]. Energy, 2014, 68(4): 658-666.

    [30] Derking J, Holland H, Lerou P, et al. Micromachined Joule-Thomson cold stages operating in the temperature range 80-250 K[J]. International Journal of Refrigeration, 2012, 35: 1200-1207.

    TONG Xin, CHEN Xiaoping, LI Jiapeng, XIA Ming, HUAI Yang, CHEN Junyuan. Micro-coolers Based on MEMS Technology[J]. Infrared Technology, 2021, 43(2): 104
    Download Citation