• Optics and Precision Engineering
  • Vol. 28, Issue 4, 898 (2020)
XIN Ji-hao*, HE Xing-yue, and WANG De-bo
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/ope.20202804.0898 Cite this Article
    XIN Ji-hao, HE Xing-yue, WANG De-bo. Thermoacoustic efficiency of graphene sound-generators using different structures[J]. Optics and Precision Engineering, 2020, 28(4): 898 Copy Citation Text show less
    References

    [1] LEE S K, KIM B J, JANG H, et al.. Stretchable graphene transistors with printed dielectrics and gate electrodes[J]. Nano Letters, 2011, 11(11): 4642-4646.

         LEE S K, KIM B J, JANG H, et al.. Stretchable graphene transistors with printed dielectrics and gate electrodes[J]. Nano Letters, 2011, 11(11): 4642-4646.

    [2] LIU Z F, LIU Q, HUANG Y, et al.. Organic photovoltaic devices based on a novel acceptor material: graphene[J]. Advanced Materials, 2008, 20(20): 3924-3930.

         LIU Z F, LIU Q, HUANG Y, et al.. Organic photovoltaic devices based on a novel acceptor material: graphene[J]. Advanced Materials, 2008, 20(20): 3924-3930.

    [3] ZHOU F, JIN X F. All-fiber graphene electro-absorption modulator[J]. Opt. Precision Eng., 2016, 24(9): 2117-2125.(in Chinese)

         ZHOU F, JIN X F. All-fiber graphene electro-absorption modulator[J]. Opt. Precision Eng., 2016, 24(9): 2117-2125.(in Chinese)

    [4] HAN T, LEE Y, CHOI M R, et al.. Extremely efficient flexible organic light-emitting diodes with modified graphene anode[J]. Nature Photonics, 2012, 6(2): 105-110.

         HAN T, LEE Y, CHOI M R, et al.. Extremely efficient flexible organic light-emitting diodes with modified graphene anode[J]. Nature Photonics, 2012, 6(2): 105-110.

    [5] KIM R, BAE M, KIM D G, et al.. Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates[J]. Nano Letters, 2011, 11(9): 3881-3886.

         KIM R, BAE M, KIM D G, et al.. Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates[J]. Nano Letters, 2011, 11(9): 3881-3886.

    [6] ROGERS J A. Electronic materials: making graphene for macroelectronics[J]. Nature Nanotechnology, 2008, 3(5): 254-255.

         ROGERS J A. Electronic materials: making graphene for macroelectronics[J]. Nature Nanotechnology, 2008, 3(5): 254-255.

    [7] BONACCORSO F, SUN Z, HASAN T, et al.. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9): 611-622.

         BONACCORSO F, SUN Z, HASAN T, et al.. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9): 611-622.

    [8] BAE S, LEE Y, SHARMA B K, et al.. Graphene-based transparent strain sensor[J]. Carbon, 2013, 51(1): 236-242.

         BAE S, LEE Y, SHARMA B K, et al.. Graphene-based transparent strain sensor[J]. Carbon, 2013, 51(1): 236-242.

    [9] LIU X M, CAO X Y, LI X D, et al.. Electrical conductivity of graphene film electrodes on PET and SiO2 substrate under blue light irradiation[J]. Opt. Precision Eng., 2016, 24(10s): 162-168. (in Chinese)

         LIU X M, CAO X Y, LI X D, et al.. Electrical conductivity of graphene film electrodes on PET and SiO2 substrate under blue light irradiation[J]. Opt. Precision Eng., 2016, 24(10s): 162-168. (in Chinese)

    [10] FENG D J, HUANG W Y, JI P Y, et al.. Erbium-doped fiber ring cavity pulsed laser based on graphene saturable absorber[J]. Opt. Precision Eng., 2013, 21(5): 1097-1101.(in Chinese)

         FENG D J, HUANG W Y, JI P Y, et al.. Erbium-doped fiber ring cavity pulsed laser based on graphene saturable absorber[J]. Opt. Precision Eng., 2013, 21(5): 1097-1101.(in Chinese)

    [11] ZHENG A R, ZHANG W, GUO ZH, et al.. Graphene sensor for activatied partial thromboplatin time detection[J]. Opt. Precision Eng., 2019, 27(6): 1387-1396.(in Chinese)

         ZHENG A R, ZHANG W, GUO ZH, et al.. Graphene sensor for activatied partial thromboplatin time detection[J]. Opt. Precision Eng., 2019, 27(6): 1387-1396.(in Chinese)

    [12] ARNOLD H D, CRANDALL I B. The thermophone as a precision source of sound[J]. Physical Review, 1917, 10(1): 22-38.

         ARNOLD H D, CRANDALL I B. The thermophone as a precision source of sound[J]. Physical Review, 1917, 10(1): 22-38.

    [13] SUK J W, KIRK K D, HAO Y F, et al.. Thermoacoustic sound generation from monolayer graphene for transparent and flexible sound sources[J]. Advanced Materials, 2012, 24(47): 6342-6347.

         SUK J W, KIRK K D, HAO Y F, et al.. Thermoacoustic sound generation from monolayer graphene for transparent and flexible sound sources[J]. Advanced Materials, 2012, 24(47): 6342-6347.

    [14] FEI W W, ZHOU J X, GUO W L. Low‐voltage driven graphene foam thermoacoustic speaker[J]. Small, 2015, 11(19): 2252-2256.

         FEI W W, ZHOU J X, GUO W L. Low‐voltage driven graphene foam thermoacoustic speaker[J]. Small, 2015, 11(19): 2252-2256.

    [15] TAO L Q, LIU Y, TIAN H, et al.. A novel thermal acoustic device based on porous graphene[J]. AIP Advances, 2016, 6(1): 015105.

         TAO L Q, LIU Y, TIAN H, et al.. A novel thermal acoustic device based on porous graphene[J]. AIP Advances, 2016, 6(1): 015105.

    [16] TAO L Q, SUN H, LIU Y, et al.. Flexible graphene sound device based on laser reduced graphene[J]. Applied Physics Letters, 2017, 111(10): 103104.

         TAO L Q, SUN H, LIU Y, et al.. Flexible graphene sound device based on laser reduced graphene[J]. Applied Physics Letters, 2017, 111(10): 103104.

    [17] LEE K, JANG S H, JUNG I. Analysis of acoustical performance of Bi-layer graphene and graphene-foam-based thermoacoustic sound generating devices[J]. Carbon, 2018, 127: 13-20.

         LEE K, JANG S H, JUNG I. Analysis of acoustical performance of Bi-layer graphene and graphene-foam-based thermoacoustic sound generating devices[J]. Carbon, 2018, 127: 13-20.

    [18] LEE K, JANG S H, JUNG I. Acoustic performance of dual-electrode electrostatic sound generators based on CVD graphene on polyimide film[J]. Nanotechnology, 2018, 29(32): 325502.

         LEE K, JANG S H, JUNG I. Acoustic performance of dual-electrode electrostatic sound generators based on CVD graphene on polyimide film[J]. Nanotechnology, 2018, 29(32): 325502.

    [19] TIAN H, REN T L, XIE D, et al.. Graphene-on-paper sound source devices[J]. ACS Nano, 2011, 5(6): 4878-4885.

         TIAN H, REN T L, XIE D, et al.. Graphene-on-paper sound source devices[J]. ACS Nano, 2011, 5(6): 4878-4885.

    [20] TIAN H, XIE D, YANG Y, et al.. Single-layer graphene sound-emitting devices: experiments and modeling[J]. Nanoscale, 2012, 4(7): 2272-2277.

         TIAN H, XIE D, YANG Y, et al.. Single-layer graphene sound-emitting devices: experiments and modeling[J]. Nanoscale, 2012, 4(7): 2272-2277.

    [21] TIAN H, LI C, MOHAMMAD M A, et al.. Graphene earphones: entertainment for both humans and animals[J]. ACS Nano, 2014, 8(6): 5883-5890.

         TIAN H, LI C, MOHAMMAD M A, et al.. Graphene earphones: entertainment for both humans and animals[J]. ACS Nano, 2014, 8(6): 5883-5890.

    XIN Ji-hao, HE Xing-yue, WANG De-bo. Thermoacoustic efficiency of graphene sound-generators using different structures[J]. Optics and Precision Engineering, 2020, 28(4): 898
    Download Citation