• Photonics Research
  • Vol. 7, Issue 5, 532 (2019)
Sihui Chen, Rui Hao, Yi Zhang, and Hui Yang*
Author Affiliations
  • Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
  • show less
    DOI: 10.1364/PRJ.7.000532 Cite this Article Set citation alerts
    Sihui Chen, Rui Hao, Yi Zhang, Hui Yang. Optofluidics in bio-imaging applications[J]. Photonics Research, 2019, 7(5): 532 Copy Citation Text show less
    References

    [1] A. R. Kherlopian, T. Song, Q. Duan, M. A. Neimark, M. J. Po, J. K. Gohagan, A. F. Laine. A review of imaging techniques for systems biology. BMC Syst. Biol., 2, 74(2008).

    [2] K. König. Multiphoton microscopy in life sciences. J. Microsc., 200, 83-104(2000).

    [3] F. Gaboriaud, Y. F. Dufrêne. Atomic force microscopy of microbial cells: application to nanomechanical properties, surface forces and molecular recognition forces. Colloids Surf. B, 54, 10-19(2007).

    [4] M. A. Hamburg, F. S. Collins. The path to personalized medicine. N. Engl. J. Med., 363, 301-304(2010).

    [5] K.-H. Jung, K.-H. Lee. Molecular imaging in the era of personalized medicine. J. Pathol. Transl. Med., 49, 5-12(2015).

    [6] P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. Omenetto, K. B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sørensen, J. Chen, M. Pollnau, S. Xiong, A.-Q. Liu, C.-C. Shiue, S.-K. Fan, D. Erickson, D. Sinton. Roadmap for optofluidics. J. Opt., 19, 093003(2017).

    [7] X. Mao, S.-C. S. Lin, C. Dong, T. J. Huang. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing. Lab Chip, 9, 1583-1589(2009).

    [8] X. Mao, A. A. Nawaz, S.-C. S. Lin, M. I. Lapsley, Y. Zhao, J. P. McCoy, W. S. El-Deiry, T. J. Huang. An integrated, multiparametric flow cytometry chip using ‘microfluidic drifting’ based three-dimensional hydrodynamic focusing. Biomicrofluidics, 6, 024113(2012).

    [9] M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Ding, X. Mao, T. J. Huang. A single-layer, planar, optofluidic Mach–Zehnder interferometer for label-free detection. Lab Chip, 11, 1795-1800(2011).

    [10] J. S. Mak, S. A. Rutledge, R. M. Abu-Ghazalah, F. Eftekhari, J. Irizar, N. C. Tam, G. Zheng, A. S. Helmy. Recent developments in optofluidic-assisted Raman spectroscopy. Prog. Quant. Electron., 37, 1-50(2013).

    [11] X. Fan, S. H. Yun. The potential of optofluidic biolasers. Nat. Methods, 11, 141-147(2014).

    [12] N.-T. Nguyen. Micro-optofluidic lenses: a review. Biomicrofluidics, 4, 031501(2010).

    [13] X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, Y. Sun. Sensitive optical biosensors for unlabeled targets: a review. Anal. Chim. Acta, 620, 8-26(2008).

    [14] N.-T. Huang, H.-L. Zhang, M.-T. Chung, J. H. Seo, K. Kurabayashi. Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection. Lab Chip, 14, 1230-1245(2014).

    [15] C. Monat, P. Domachuck, B. J. Eggleton. Integrated optofluidics: a new river of light. Nat. Photonics, 1, 106-114(2007).

    [16] X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, C. Yang. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging. Proc. Natl. Acad. Sci. USA, 105, 10670-10675(2008).

    [17] D. Erickson, D. Sinton, D. Psaltis. Optofluidics for energy applications. Nat. Photonics, 5, 583-590(2011).

    [18] T. Yang, F. Bragheri, P. Minzioni. A comprehensive review of optical stretcher for cell mechanical characterization at single-cell level. Micromachines, 7, 90(2016).

    [19] C. Song, S. H. Tan. A perspective on the rise of optofluidics and the future. Micromachines, 8, 152(2017).

    [20] Y. Zhao, Z. S. Stratton, F. Guo, M. I. Lapsley, C. Y. Chan, S.-C. S. Lin, T. J. Huang. Optofluidic imaging: now and beyond. Lab Chip, 13, 17-24(2013).

    [21] D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, M. G. Bawendi. A low-threshold, high-efficiency microfluidic waveguide laser. J. Am. Chem. Soc., 127, 8952-8953(2005).

    [22] W. Song, A. E. Vasdekis, Z. Li, D. Psaltis. Optofluidic evanescent dye laser based on a distributed feedback circular grating. Appl. Phys. Lett., 94, 161110(2009).

    [23] X. Fan, I. M. White. Optofluidic microsystems for chemical and biological analysis. Nat. Photonics, 5, 591-597(2011).

    [24] W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, X. Fan. Tunable single mode lasing from an on-chip optofluidic ring resonator laser. Appl. Phys. Lett., 98, 061103(2011).

    [25] S. K. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, G. M. Whitesides. A multi-color fast-switching microfluidic droplet dye laser. Lab Chip, 9, 2767-2771(2009).

    [26] X. Jiang, Q. Song, L. Xu, J. Fu, L. Tong. Microfiber knot dye laser based on the evanescent-wave-coupled gain. Appl. Phys. Lett., 90, 233501(2007).

    [27] S. I. Shopova, H. Zhou, X. Fan, P. Zhang. Optofluidic ring resonator based dye laser. Appl. Phys. Lett., 90, 221101(2007).

    [28] S. Xiong, A. Liu, L. Chin, Y. Yang. An optofluidic prism tuned by two laminar flows. Lab Chip, 11, 1864-1869(2011).

    [29] D. Kopp, L. Lehmann, H. Zappe. Optofluidic laser scanner based on a rotating liquid prism. Appl. Opt., 55, 2136-2142(2016).

    [30] L. Pang, H. M. Chen, L. M. Freeman, Y. Fainman. Optofluidic devices and applications in photonics, sensing and imaging. Lab Chip, 12, 3543-3551(2012).

    [31] K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, Y. Fainman. A microfluidic 2 × 2 optical switch. Appl. Phys. Lett., 85, 6119-6121(2004).

    [32] P.-H. Huang, M. I. Lapsley, D. Ahmed, Y. Chen, L. Wang, T. J. Huang. A single-layer, planar, optofluidic switch powered by acoustically driven, oscillating microbubbles. Appl. Phys. Lett., 101, 141101(2012).

    [33] Q. Chen, T. Li, Z. Li, J. Long, X. Zhang. Optofluidic tunable lenses for in-plane light manipulation. Micromachines, 9, 97(2018).

    [34] X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, T. J. Huang. Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom. Lab Chip, 9, 2050-2058(2009).

    [35] H. Yu, G. Zhou, H. M. Leung, F. S. Chau. Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation. Opt. Express, 18, 9945-9954(2010).

    [36] L. Dong, A. K. Agarwal, D. J. Beebe, H. Jiang. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature, 442, 551-554(2006).

    [37] K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, F. Mugele. Optofluidic lens with tunable focal length and asphericity. Sci. Rep., 4, 6378(2014).

    [38] Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, K. Sugioka. All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching. Adv. Opt. Mater., 6, 1701299(2018).

    [39] J. Shi, Z. Stratton, S.-C. S. Lin, H. Huang, T. J. Huang. Tunable optofluidic microlens through active pressure control of an air–liquid interface. Microfluid. Nanofluid., 9, 313-318(2010).

    [40] H. Liu, Y. Shi, L. Liang, L. Li, S. Guo, L. Yin, Y. Yang. A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments. Lab Chip, 17, 1280-1286(2017).

    [41] C. Fang, B. Dai, Q. Xu, R. Zhuo, Q. Wang, X. Wang, D. Zhang. Hydrodynamically reconfigurable optofluidic microlens with continuous shape tuning from biconvex to biconcave. Opt. Express, 25, 888-897(2017).

    [42] N. Schuergers, T. Lenn, R. Kampmann, M. V. Meissner, T. Esteves, M. Temerinac-Ott, J. G. Korvink, A. R. Lowe, C. W. Mullineaux, A. Wilde. Cyanobacteria use micro-optics to sense light direction. ELife, 5, e12620(2016).

    [43] E. De Tommasi, A. C. De Luca, L. Lavanga, P. Dardano, M. De Stefano, L. De Stefano, C. Langella, I. Rendina, K. Dholakia, M. Mazilu. Biologically enabled sub-diffractive focusing. Opt. Express, 22, 27214-27227(2014).

    [44] L. Miccio, P. Memmolo, F. Merola, P. A. Netti, P. Ferraro. Red blood cell as an adaptive optofluidic microlens. Nat. Commun., 6, 6502(2015).

    [45] J. N. Monks, B. Yan, N. Hawkins, F. Vollrath, Z. Wang. Spider silk: mother nature’s bio-superlens. Nano Lett., 16, 5842-5845(2016).

    [46] Y. Li, X. Liu, X. Yang, H. Lei, Y. Zhang, B. Li. Enhancing upconversion fluorescence with a natural bio-microlens. ACS Nano, 11, 10672-10680(2017).

    [47] P. C. H. Li, L. de Camprieu, J. Cai, M. Sangar. Transport, retention and fluorescent measurement of single biological cells studied in microfluidic chips. Lab Chip, 4, 174-180(2004).

    [48] D. Hess, A. Rane, A. J. deMello, S. Stavrakis. High-throughput, quantitative enzyme kinetic analysis in microdroplets using stroboscopic epifluorescence imaging. Anal. Chem., 87, 4965-4972(2015).

    [49] Y. Zeng, L. Jiang, W. Zheng, D. Li, S. Yao, J. Y. Qu. Quantitative imaging of mixing dynamics in microfluidic droplets using two-photon fluorescence lifetime imaging. Opt. Lett., 36, 2236-2238(2011).

    [50] M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, P. Ferraro. Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography. Lab Chip, 12, 3073-3076(2012).

    [51] M. Duocastella, G. Vicidomini, A. Diaspro. Simultaneous multiplane confocal microscopy using acoustic tunable lenses. Opt. Express, 22, 19293-19301(2014).

    [52] C. Simonnet, A. Groisman. Two-dimensional hydrodynamic focusing in a simple microfluidic device. Appl. Phys. Lett., 87, 114104(2005).

    [53] H. Shao, H. Im, C. M. Castro, X. Breakefield, R. Weissleder, H. Lee. New technologies for analysis of extracellular vesicles. Chem. Rev., 118, 1917-1950(2018).

    [54] Y. Sun, X. Fan. Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers. Angew. Chem. Int. Ed., 51, 1236-1239(2012).

    [55] Q. Chen, X. Zhang, Y. Sun, M. Ritt, S. Sivaramakrishnan, X. Fan. Highly sensitive fluorescent protein FRET detection using optofluidic lasers. Lab Chip, 13, 2679-2681(2013).

    [56] G. Zheng, R. Horstmeyer, C. Yang. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics, 7, 739-745(2013).

    [57] L. Shao, P. Kner, E. H. Rego, M. G. Gustafsson. Super-resolution 3D microscopy of live whole cells using structured illumination. Nat. Methods, 8, 1044-1046(2011).

    [58] M. Friedrich, Q. Gan, V. Ermolayev, G. S. Harms. STED–SPIM: stimulated emission depletion improves sheet illumination microscopy resolution. Biophys. J., 100, L43-L45(2011).

    [59] S. T. Hess, T. P. K. Girirajan, M. D. Mason. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J., 91, 4258-4272(2006).

    [60] B. Huang, W. Wang, M. Bates, X. Zhuang. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 319, 810-813(2008).

    [61] R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, J.-B. Sibarita. 3D high- and super-resolution imaging using single-objective SPIM. Nat. Methods, 12, 641-644(2015).

    [62] T. Bruns, S. Schickinger, R. Wittig, H. Schneckenburger. Preparation strategy and illumination of three-dimensional cell cultures in light sheet-based fluorescence microscopy. J. Biomed. Opt., 17, 1015181(2012).

    [63] R. Regmi, K. Mohan, P. P. Mondal. High resolution light-sheet based high-throughput imaging cytometry system enables visualization of intra-cellular organelles. AIP Adv., 4, 097125(2014).

    [64] H. Deschout, K. Raemdonck, S. Stremersch, P. Maoddi, G. Mernier, P. Renaud, S. Jiguet, A. Hendrix, M. Bracke, R. Van den Broecke, M. Roding, M. Rudemo, J. Demeester, S. C. De Smedt, F. Strubbe, K. Neyts, K. Braeckmans. On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids. Nanoscale, 6, 1741-1747(2014).

    [65] P. Paiè, F. Bragheri, A. Bassi, R. Osellame. Selective plane illumination microscopy on a chip. Lab Chip, 16, 1556-1560(2016).

    [66] P. Paiè, F. Bragheri, T. Claude, R. Osellame. Optofluidic light modulator integrated in lab-on-a-chip. Opt. Express, 25, 7313-7323(2017).

    [67] E. Zagato, T. Brans, S. Verstuyft, D. van Thourhout, J. Missinne, G. van Steenberge, J. Demeester, S. De Smedt, K. Remaut, K. Neyts, K. Braeckmans. Microfabricated devices for single objective single plane illumination microscopy (SoSPIM). Opt. Express, 25, 1732-1745(2017).

    [68] M. B. M. Meddens, S. Liu, P. S. Finnegan, T. L. Edwards, C. D. James, K. A. Lidke. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution. Biomed. Opt. Express, 7, 2219-2236(2016).

    [69] V. Bianco, B. Mandracchia, V. Marchesano, V. Pagliarulo, F. Olivieri, S. Coppola, M. Paturzo, P. Ferraro. Endowing a plain fluidic chip with micro-optics: a holographic microscope slide. Light Sci. Appl., 6, e17055(2017).

    [70] D. Psaltis, S. R. Quake, C. Yang. Developing optofluidic technology through the fusion of microfluidics and optics. Nature, 442, 381-386(2006).

    [71] S. A. Lee, R. Leitao, G. Zheng, S. Yang, A. Rodriguez, C. Yang. Color capable sub-pixel resolving optofluidic microscope and its application to blood cell imaging for malaria diagnosis. PLOS ONE, 6, e26127(2011).

    [72] X. Shi, L. Hesselink. Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage. Jpn. J. Appl. Phys., 41, 1632-1635(2002).

    [73] A. Greenbaum, W. Luo, B. Khademhosseinieh, T.-W. Su, A. F. Coskun, A. Ozcan. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy. Sci. Rep., 3, 1717(2013).

    [74] L. M. Lee, X. Cui, C. Yang. The application of on-chip optofluidic microscopy for imaging Giardia lamblia trophozoites and cysts. Biomed. Microdevices, 11, 951-958(2009).

    [75] G. Zheng, S. A. Lee, S. Yang, C. Yang. Sub-pixel resolving optofluidic microscope for on-chip cell imaging. Lab Chip, 10, 3125-3129(2010).

    [76] S. Pang, C. Han, L. M. Lee, C. Yang. Fluorescence microscopy imaging with a Fresnel zone plate array based optofluidic microscope. Lab Chip, 11, 3698-3702(2011).

    [77] M. Sanz, J. Á. Picazo-Bueno, L. Granero, J. García, V. Micó. Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy. Sci. Rep., 7, 43291(2017).

    [78] W. Bishara, T. W. Su, A. F. Coskun, A. Ozcan. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution. Opt. Express, 18, 11181-11191(2010).

    [79] W. Bishara, U. Sikora, O. Mudanyali, T. W. Su, O. Yaglidere, S. Luckhart, A. Ozcan. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array. Lab Chip, 11, 1276-1279(2011).

    [80] A. Greenbaum, Y. Zhang, A. Feizi, P.-L. Chung, W. Luo, S. R. Kandukuri, A. Ozcan. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Sci. Transl. Med., 6, 267ra175(2014).

    [81] W. Luo, A. Greenbaum, Y. Zhang, A. Ozcan. Synthetic aperture-based on-chip microscopy. Light Sci. Appl., 4, e261(2015).

    [82] A. Greenbaum, A. Feizi, N. Akbari, A. Ozcan. Wide-field computational color imaging using pixel super-resolved on-chip microscopy. Opt. Express, 21, 12469-12483(2013).

    [83] Y. Zhang, Y. Wu, Y. Zhang, A. Ozcan. Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction. Sci. Rep., 6, 27811(2016).

    [84] M. M. Villone, G. D’Avino, M. A. Hulsen, P. L. Maffettone. Dynamics of prolate spheroidal elastic particles in confined shear flow. Phys. Rev. E, 92, 062303(2015).

    [85] F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, P. Ferraro. Tomographic flow cytometry by digital holography. Light Sci. Appl., 6, e16241(2017).

    [86] C. Faigle, F. Lautenschläger, G. Whyte, P. Homewood, E. Martín-Badosa, J. Guck. A monolithic glass chip for active single-cell sorting based on mechanical phenotyping. Lab Chip, 15, 1267-1275(2015).

    [87] C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, I. Cristiani. Integrated microfluidic device for single-cell trapping and spectroscopy. Sci. Rep., 3, 1258(2013).

    [88] Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang, A. Q. Liu. High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip. Lab Chip, 17, 2443-2450(2017).

    [89] B. H. Wunsch, J. T. Smith, S. M. Gifford, C. Wang, M. Brink, R. L. Bruce, R. H. Austin, G. Stolovitzky, Y. Astier. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Nat. Nanotechnol., 11, 936-940(2016).

    [90] S. H. Ko, D. Chandra, W. Ouyang, T. Kwon, P. Karande, J. Han. Nanofluidic device for continuous multiparameter quality assurance of biologics. Nat. Nanotechnol., 12, 804-812(2017).

    [91] A. K. Lau, H. C. Shum, K. K. Wong, K. K. Tsia. Optofluidic time-stretch imaging—an emerging tool for high-throughput imaging flow cytometry. Lab Chip, 16, 1743-1756(2016).

    [92] K. Goda, K. K. Tsia, B. Jalali. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature, 458, 1145-1149(2009).

    [93] F. Xing, H. Chen, C. Lei, Z. Weng, M. Chen, S. Yang, S. Xie. Serial wavelength division 1  GHz line-scan microscopic imaging. Photon. Res., 2, B31-B34(2014).

    [94] A. M. Fard, A. Mahjoubfar, K. Goda, D. R. Gossett, D. Di Carlo, B. Jalali. Nomarski serial time-encoded amplified microscopy for high-speed contrast-enhanced imaging of transparent media. Biomed. Opt. Express, 2, 3387-3392(2011).

    [95] K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, B. Jalali. High-throughput single-microparticle imaging flow analyzer. Proc. Natl. Acad. Sci. USA, 109, 11630-11635(2012).

    [96] T. T. W. Wong, A. K. S. Lau, K. K. Y. Ho, M. Y. H. Tang, J. D. F. Robles, X. Wei, A. C. S. Chan, A. H. L. Tang, E. Y. Lam, K. K. Y. Wong, G. C. F. Chan, H. C. Shum, K. K. Tsia. Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow. Sci. Rep., 4, 3656(2014).

    [97] M. Ugawa, C. Lei, T. Nozawa, T. Ideguchi, D. Di Carlo, S. Ota, Y. Ozeki, K. Goda. High-throughput optofluidic particle profiling with morphological and chemical specificity. Opt. Lett., 40, 4803-4806(2015).

    Sihui Chen, Rui Hao, Yi Zhang, Hui Yang. Optofluidics in bio-imaging applications[J]. Photonics Research, 2019, 7(5): 532
    Download Citation