• Chinese Optics Letters
  • Vol. 22, Issue 10, 100602 (2024)
Beibei Xing1, Jianxiang Wen1,*, Sha Li1, Yu Wen2..., Qiuhui Chu2, Rumao Tao2, Tao Chen1, Yanhua Luo1, Wei Chen1, Fufei Pang1 and Tingyun Wang1|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
  • 2Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China
  • show less
    DOI: 10.3788/COL202422.100602 Cite this Article Set citation alerts
    Beibei Xing, Jianxiang Wen, Sha Li, Yu Wen, Qiuhui Chu, Rumao Tao, Tao Chen, Yanhua Luo, Wei Chen, Fufei Pang, Tingyun Wang, "Temperature insensitivity of an all-fiber quarter-wave plate device fabricated with a high-birefringence fiber," Chin. Opt. Lett. 22, 100602 (2024) Copy Citation Text show less
    References

    [1] P. Perez-Millan, L. Martinez-Leon, A. Diez et al. A fiber-optic current sensor with frequency-codified output for high-voltage systems. IEEE Photon. Technol. Lett., 14, 1339(2002).

    [2] A. Madaschi, M. Brunero, M. Ferrario et al. Compact fiber-optic current sensor with a polarization splitter and a 22.5° Faraday rotator. IEEE Sensors Lett., 6, 5000604(2022).

    [3] M. Belal, Z. Song, Y. Jung et al. Optical fiber microwire current sensor. Opt. Lett., 35, 3045(2010).

    [4] R. Zhang, W. Du, F. Shao et al. Voltage, thermal and magnetic field fiber sensors based on magnetic nanoparticles-doped photonic liquid crystal fibers. Opt. Express, 31, 25372(2023).

    [5] R. Zhang, S. Hu, Y. Wang. A novel quarter wave plate and its applications to the reflective fiber-optic current sensor. Proc. SPIE, 10025, 1002511(2016).

    [6] Y. Ding, Y. Dong, J. Zhu et al. Linear birefringence and imperfect quarter wave plate effects on optic-fiber current sensor. Proc. SPIE, 8311, 83112C(2011).

    [7] H. Hu, J. Huang, L. Xia et al. The compensation of long-term temperature induced error in the all fiber current transformer through optimizing initial phase delay in λ/4 wave plate. Microw. Opt. Techn. Let., 61, 1769(2019).

    [8] V. Temkina, A. Medvedev, A. Mayzel et al. Manufacturing method and stability research of the fiber quarter-wave plate for fiber optic current sensor. IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), 278(2019).

    [9] N. Peng, Y. Huang, S. Wang et al. Fiber optic current sensor based on special spun highly birefringent fiber. IEEE Photon. Technol. Lett., 25, 1668(2013).

    [10] D. Yu, B. Zhao. All-fiber waveplate made of helically wound spun highly birefringent optical fiber. J. Lightwave Technol., 40, 7907(2022).

    [11] D. Yu, X. Gao, B. Zhao. Unclosed fiber optic current sensor based on helically wound spun highly birefringent fiber half waveplate. Opt. Fiber Technol., 72, 102992(2022).

    [12] J. Wu, X. Zhang, L. Chen et al. Simulation analysis of temperature effects on all-fiber optic current sensor. Energy Rep., 7, 1521(2021).

    [13] L. Wang, Z. Shi, S. Tang et al. Analysis on stability of polarization-transforming performance of fiber wave plate. Optik, 157, 1249(2018).

    [14] V. Temkina, A. Medvedev, A. Mayzel et al. Experimental study of temperature impact on fiber optic current sensor elements. International Conference on Next Generation Wired/Wireless Networking, 240(2021).

    [15] A. H. Rose, N. Feat, S. M. Etzel. Wavelength and temperature performance of polarization-transforming fiber. Appl. Opt., 42, 6897(2003).

    [16] H. Gao, G. Wang, W. Gao et al. A method for suppressing error of fiber optic current transformer caused by temperature based on λ/4 wave plate fabricated with polarization-maintaining photonic crystal fiber. IEEE Sensors J., 23, 10517(2023).

    [17] V. Budinski, D. Donlagic. Miniature, all-fiber rotation sensor based on temperature compensated wave plate. IEEE Photon. Technol. Lett., 27, 85(2015).

    [18] J. Noda, K. Okamoto, Y. Sasaki. Polarization-maintaining fibers and their applications. J. Lightwave Technol., 4, 1071(1986).

    [19] J. Poirson, T. Lanternier, J. C. Cotteverte et al. Jones matrices of a quarter-wave plate for Gaussian beams. Appl. Opt., 34, 6806(1995).

    [20] S. X. Short, A. A. Tselikov, J. U. de Arruda et al. Imperfect quarter-waveplate compensation in Sagnac interferometer-type current sensors. J. Lightwave Technol., 16, 1212(1998).

    [21] K. Bohnert, P. Gabus, J. Nehring et al. Temperature and vibration insensitive fiber-optic current sensor. J. Lightwave Technol., 20, 267(2002).

    [22] H. Shi, J. Wen, B. Xing et al. Polarization and magneto-optical characteristics of Tb:YAG crystal-derived silica fiber via laser-heating drawing technique. Chin. Opt. Lett., 21, 110601(2023).

    [23] R. Stolen. Polarization effects in fiber Raman and Brillouin lasers. IEEE J. Quantum Electron., 15, 1157(1979).

    [24] R. Tao, P. Ma, X. Wang et al. Comparison of the threshold of thermal-induced mode instabilities in polarization-maintaining and non-polarization-maintaining active fibers. J. Opt., 18, 065501(2016).

    Beibei Xing, Jianxiang Wen, Sha Li, Yu Wen, Qiuhui Chu, Rumao Tao, Tao Chen, Yanhua Luo, Wei Chen, Fufei Pang, Tingyun Wang, "Temperature insensitivity of an all-fiber quarter-wave plate device fabricated with a high-birefringence fiber," Chin. Opt. Lett. 22, 100602 (2024)
    Download Citation